数据恢复-01-机械硬盘的物理与逻辑结构

磁盘存储原理

在这里插入图片描述
在这里插入图片描述

磁盘存储数据的原理:
磁盘存储数据的原理是利用磁性材料在磁场作用下的磁化性质,通过在磁盘表面上划分成许多小区域,根据不同的磁化方向来表示0和1的二进制数据,通过读写磁头在磁盘上的移动,可以实现数据的读取和写入。
电脑硬盘拆解全过程 放大100倍 磁头坏道盘片磁道看的门清_哔哩哔哩_bilibili
注意:电脑开机状态下,不要搬运,挪动,碰撞。否则可以由于震动使磁头刮伤高速旋转的磁盘,从而导致数据丢失。

机械硬盘的物理部件

在这里插入图片描述
在这里插入图片描述

主控电路板:控制
密封盘腔:接口
磁头组件:读写
磁盘盘片:存储
音圈电机:驱动磁头
主轴电机:启动盘片
连接排线:连接

关于盘片

在这里插入图片描述

黄色为磁性晶粒层 类似有NS的磁铁,比如黄色的为0蓝色方向的为1

硬盘的逻辑结构

在这里插入图片描述

划分 指分割出区域
定义是在头尾写入数据
磁道:磁盘上一圈圈用于存储数据的磁化区域构成磁道(Track)




扇区:磁盘上的每个磁道被等分为若干个弧段,这些弧段便是硬盘的扇区(Sector)


柱面:不同盘面上同一半径的磁道就构成了一个个的柱面(cylinder)

盘面

盘面号:硬盘的盘片一般用铝合金材料做基片,高速硬盘也可能用玻璃做基片。玻璃基片更容易达到所需的平面度和光洁度,且有很高的硬度。磁头传动装置是使磁头部件作径向移动的部件,通常有两种类型的传动装置。一种是齿条传动的步进电机传动装置;另一种是音圈电机传动装置。前者是固定推算的传动定位器,而后者则采用伺服反馈移动到正确的位置上。磁头传动装置以很小的距离使磁头部件做径向移动,用以变换磁道
硬盘的每一个盘片都有两个盘面(Side),即上、下盘面,一般每个盘面只会利用一面存储数据,成为有效盘片,也有极个别的硬盘上下两面都利用。每一个这样的有效盘面都有一个盘面号,按顺序从上至下从“0”开始依次编号。在硬盘系统中,盘面号又叫磁头号,因为每一个有效盘面都有一个对应的读写磁头。硬盘通常有2~3个盘片,故盘面号(磁头号)为0~1或0~2。
在这里插入图片描述

磁道

磁道:磁盘在格式化时被划分成许多同心圆,这些同心圆轨迹叫做磁道(Track)。磁道从外向内从0开始顺序编号。硬盘的每一个盘面有300~1 024个磁道,新式大容量硬盘每面的磁道数更多。信息以01串的形式记录在这些轨迹中。一个标准的3.5in硬盘盘面通常有几百到几千条磁道。磁道是“看”不见的,只是盘面上以特殊形式磁化了的一些磁化区,在磁盘格式化时就已规划完毕。

柱面

柱面:所有盘面上的同一磁道构成一个柱,通常称做柱面(Cylinder),每个圆柱上的磁头由上而下从“0”开始编号。数据的读/写按柱面进行,即磁头读/写数据时首先在同一柱面内从“0”磁头开始进行操作,依次向下在同一柱面的不同盘面即磁头上进行操作,只在同一柱面所有的磁头全部读/写完毕后磁头才转移到下一柱面,因为选取磁头只需通过电子切换即可,而选取柱面则必须通过机械切换。电子切换相当快,比在机械上磁头向邻近磁道移动快得多,所以,数据的读/写按柱面进行,而不按盘面进行。也就是说,一个磁道写满数据后,就在同一柱面的下一个盘面来写,一个柱面写满后,才移到下一个扇区开始写数据。读数据也按照这种方式进行,这样就提高了硬盘的读/写效率。一块硬盘驱动器的圆柱数(或每个盘面的磁道数)既取决于每条磁道的宽窄(同样,也与磁头的大小有关),也取决于定位机构所决定的磁道间步距的大小。

关于扇区

在这里插入图片描述

磁盘在低格化处理的时候,会划分和定义扇区,扇区标识坏的时候,是逻辑坏道,可以被恢复

这些同心圆不是连续记录数据,而是被划分成一段段的圆弧,这些圆弧的角速度一样。由于径向长度不一样,所以,线速度不一样,外圈的线速度较内圈的线速度大,即同样的转速下,外圈在同样时间段里,划过的圆弧长度要比内圈划过的圆弧长度大。每段圆弧叫做一个扇区,扇区从“1”开始编号,每个扇区中的数据作为一个单元同时读出或写入。
操作系统【1】以扇区(Sector)形式将信息存储在硬盘上,每个扇区包括512个字节的数据和一些其他信息。一个扇区有两个主要部分:存储数据地点的标识符和存储数据的数据段

是数据存储的最小单元,有512字节和4k两种格式。操作系统识别 的最小单位

硬盘寻址方式

在这里插入图片描述
在这里插入图片描述

CHS
CHS(Cylinder-Head-Sector)寻址方式是一种早期的磁盘寻址方式,用于定位和访问磁盘上的数据。它将磁盘的物理结构抽象为柱面、磁头和扇区的组合。
CHS寻址方式使用柱面号、磁头号和扇区号的组合来定位和访问磁盘上的数据。 通过指定柱面号、磁头号和扇区号,操作系统或磁盘控制器可以精确地定位到磁盘上的特定数据位置。
然而,随着技术的发展,CHS寻址方式逐渐被LBA(Logical Block Addressing)寻址方式取代。LBA寻址方式使用逻辑块号来定位和访问磁盘上的数据,更加简单和灵活,能够支持更大容量的磁盘。
在这里插入图片描述
在这里插入图片描述
LBA是Logical Block Addressing(逻辑块寻址)的缩写。它是一种磁盘寻址方式,用于定位和访问磁盘上的数据。
在LBA寻址方式中,磁盘被抽象为逻辑块的序列,每个逻辑块都有一个唯一的逻辑块号(LBA)。逻辑块是磁盘上的最小可寻址单位,对应磁盘上的扇区,通常为512字节或4KB。
与CHS寻址方式不同,LBA寻址方式不需要考虑磁盘的物理结构,如柱面、磁头和扇区。通过指定逻辑块号,操作系统或磁盘控制器可以直接定位到磁盘上的特定逻辑块,而无需关心磁盘的物理布局。
LBA寻址方式的优点是简单和灵活。它可以支持更大容量的磁盘,并且不受物理结构的限制。此外,LBA寻址方式还可以提供更高的数据传输速率和更好的数据可靠性。
因此,现代计算机系统通常使用LBA寻址方式来管理磁盘上的数据,而不再使用传统的CHS寻址方式。

更进一步的寻址方式 扇区是如何编号的

工作原理:
为了对扇区进行查找和管理,需要对扇区进行编号,扇区的编号从0磁道开始,起始扇区为1扇区,其后为2扇区,3扇区…,0磁道的扇区编号结束后,1磁道的起始扇区累计编号,直到最后一个磁道的最后一个扇区(n扇区)。例如,某个硬盘有1024个磁道,每个磁道划分为63个扇区,则0磁道的扇区号为1-63,1磁道的起始扇区号为64,最后一个磁道的最后一个扇区号为64512。
如果扇区按顺序绕着磁道依次编号,那么,控制器在处理一个扇区的数据期间,磁盘旋转太远,超过扇区间的间隔(这个间隔很小),控制器要读出或写入的下一扇区已经通过磁头,也许是相当大的一段距离。在这种情况下,磁盘控制器就只能等待磁盘再次旋转几乎一周,才能使得需要的扇区到达磁头下面。

交叉因子:数据读取经常需要按顺序读取一系列相邻的扇区(逻辑数据相邻)。如对磁道扇区按物理顺序进行编号,很可能出现磁头读取完第一个扇区后,由于盘片转速过快来不及读取下一个扇区
显然,要解决这个问题,靠加大扇区间的间隔是不现实的,那会浪费许多磁盘空间。许多年前,IBM的一位杰出工程师想出了一个绝妙的办法,即对扇区不使用顺序编号,而是使用一个交叉因子(interleave)进行编号。交叉因子用比值的方法来表示,如3﹕1表示磁道上的第1个扇区为1号扇区,跳过两个扇区即第4个扇区为2号扇区,这个过程持续下去直到给每个物理扇区编上逻辑号为止。例如,每磁道有17个扇区的磁盘按2﹕1的交叉因子编号就是:l,10,2,11,3,12,4,13,5,14,6,15,7,16,8,17,9,而按3﹕1的交叉因子编号就是:l,7,13,2,8,14,3,9,15,4,10,16,5,11,17,6,12。当设置1﹕l的交叉因子时,如果硬盘控制器处理信息足够快,那么,读出磁道上的全部扇区只需要旋转一周;但如果硬盘控制器处理没有这么快,磁盘所转的圈数就等于一个磁道上的扇区数,才能读出每个磁道上的全部数据。将交叉因子设定为2﹕1时,磁头要读出磁道上的全部数据,磁盘只需转两周。如果2﹕1的交叉因子仍不够慢,磁盘旋转的周数约为磁道的扇区数,这时,可将交叉因子调整为3﹕1。
如下图,增加了交叉因子后的扇区编号一般是下面这样:在这里插入图片描述

硬盘分区与格式化

在这里插入图片描述

硬盘低级格式化:在磁盘上写入了柱面,磁道,和扇区信息数据,扇区是存取数据的前提,实现磁粒的有序管理是在出厂的时候就确定了,但这个时候,电脑还是看不到磁盘的
硬盘初始化:在硬盘的0磁道和0扇区写入MBR引导信息(主引导记录代码)和分区表。针对整个硬盘。
硬盘高级格式化:将硬盘的每个分区的起始扇区写入了DBR引导信息和文件系统引导信息。针对硬盘的每一个分区。如果DBR损坏了,对应的分区就无法查看了。C盘做操作系统,D盘安装软件等

MBR的产生

在这里插入图片描述

MBR扇区的组成

在这里插入图片描述

分区表图例及要点

在这里插入图片描述

通过分区的DBR扇区中记录的分区信息来修改MBR中的分区表项信息

为什么 FAT32 不支持 4GB 以上的文件

因为FAT32文件系统里,表示文件长度信息的内容是保存在一个4字节的数值里的,4字节二进制能表示的最大数就是4294967295,这个数正好是4GB-1字节。

下图是一个FAT32文件系统目录项的截图:
在这里插入图片描述黄色框表示文件名,红色框是文件尺寸,可以看到文件尺寸一共就4个字节,所以最多能表示的数字就是4GB-1,再大就变成0了。

为什么 FAT32 不支持 4GB 以上的文件

实验

https://www.bilibili.com/cheese/play/ep583206

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/70086.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

wordpress get_footer();与wp_footer();的区别的关系

在WordPress中,get_footer() 和 wp_footer() 是两个不同的函数,它们在主题开发中扮演着不同的角色,但都与页面的“页脚”部分有关。以下是它们的区别和关系: 1. get_footer() get_footer() 是一个用于加载页脚模板的函数。它的主…

DeepSeek 通过 API 对接第三方客户端 告别“服务器繁忙”

本文首发于只抄博客,欢迎点击原文链接了解更多内容。 前言 上一期分享了如何在本地部署 DeepSeek R1 模型,但通过命令行运行的本地模型,问答的交互也要使用命令行,体验并不是很好。这期分享几个第三方客户端,涵盖了桌…

跟着李沐老师学习深度学习(十一)

经典的卷积神经网络 在本次笔记中主要介绍一些经典的卷积神经网络模型,主要包含以下: LeNet:最早发布的卷积神经网络之一,目的是识别图像中的手写数字;AlexNet: 是第一个在大规模视觉竞赛中击败传统计算机…

使用JavaScript实现深浅拷贝

1. 拷贝的基本概念和必要性 在 JavaScript 中,数据类型分为基本数据类型(如 Number、String、Boolean、Null、Undefined、Symbol)和引用数据类型(如 Object、Array)。基本数据类型存储的是值本身,而引用数…

解析浏览器中JavaScript与Native交互原理:以WebGPU为例

引言 随着Web应用复杂度的提升,开发者对浏览器访问本地硬件能力的需求日益增长。然而,浏览器必须在开放性与安全性之间找到平衡——既不能放任JavaScript(JS)随意操作系统资源,又要为高性能计算、图形渲染等场景提供支…

T-Sql 打印所有用户表的建表脚本

-- 声明一个变量用于存储表名 DECLARE TableName NVARCHAR(128); -- 声明一个游标,用于遍历所有用户表 DECLARE TableCursor CURSOR FOR SELECT name FROM sys.tables WHERE type U; -- 打开游标 OPEN TableCursor; -- 从游标中获取第一行数据 FETCH NEXT FROM Ta…

25/2/16 <算法笔记> MiDas原理

MiDaS(Monocular Depth Sensing)是一种基于单目深度估计的技术,它通过深度学习方法使用单张RGB图像(普通2D图像)来估算场景的深度图(Depth Map)。相比于传统的依赖专用深度传感器(如…

python+halcon 解读labelme标注生成marksimage

这一段代码封装了一个类,需要传统一个图片和标注后json文件所在的地址,标注的选项是polygon,主要是用于unet深度学习网络 在初始化时需要输入文件(imagejeson)路径,多分类任务的label_list。会在项目目录下…

从技术债务到架构升级,滴滴国际化外卖的变革

背 景 商家营销简述 在外卖平台的运营中,我们致力于通过灵活的补贴策略激励商家,与商家共同打造良好的合作关系,也会提供多样化的营销活动,帮助商家吸引更多用户下单。通过这些活动,不仅能够提高商家的销量&#xff0c…

英语—四级CET4考试—技巧篇—选词填空—实操教学—2014 年 6 月大学英语四级考试真题(第 2 套)

🏠个人主页:fo安方的博客✨ 💂个人简历:大家好,我是fo安方,目前中南大学MBA在读,也考取过HCIE Cloud Computing、CCIE Security、PMP、CISP、RHCE、CCNP RS、PEST 3等证书。🐳 &…

线性代数中的正交和标准正交向量

在线性代数中,理解正交向量和正交向量至关重要,尤其是对于机器学习中的应用。这篇博文将简化这些概念,而不会太深入地深入研究复杂的数学。 正交向量 如果两个向量的点积等于零,则认为这两个向量是正交的。但点积到底是什么呢&am…

企业文件共享中的权限管理与安全风险防范

在企业的日常运营中,文件共享是必不可少的一项工作。然而,文件共享过程中如果权限管理不当,极易引发安全风险,导致企业敏感信息泄露。因此,加强文件共享中的权限管理与安全风险防范,对于保障企业信息安全至…

急停信号的含义

前言: 大家好,我是上位机马工,硕士毕业4年年入40万,目前在一家自动化公司担任软件经理,从事C#上位机软件开发8年以上!我们在开发C#的运动控制程序的时候,一个必要的步骤就是确认设备按钮的急停…

数据结构:图;邻接矩阵和邻接表

邻接矩阵: 1.概念: 邻接矩阵是图的存储结构之一,通过二维数组表示顶点间的连接关系。 2.具体例子 : 一.无向图邻接矩阵示例: 示例图(顶点:A、B、C,边:A-B、B-C&…

Kubernetes-master 组件

以下是Kubernetes Master Machine的组件。 etcd 它存储集群中每个节点可以使用的配置信息。它是一个高可用性键值存储,可以在多个节点之间分布。只有Kubernetes API服务器可以访问它,因为它可能具有一些敏感信息。这是一个分布式键值存储,所…

【第2章:神经网络基础与实现——2.1 前馈神经网络的结构与工作原理】

老铁们好!今天我们要来一场长达两万字的超详细技术探险,我会像拆解乐高积木一样把前馈神经网络(Feedforward Neural Network)的每个零件摆在台面上,用最接地气的方式让你彻底搞懂这个深度学习基石的工作原理。准备好了吗?我们开始吧! 第一章:神经网络的 “乐高积木” 1…

【云安全】云原生- K8S kubeconfig 文件泄露

什么是 kubeconfig 文件? kubeconfig 文件是 Kubernetes 的配置文件,用于存储集群的访问凭证、API Server 的地址和认证信息,允许用户和 kubectl 等工具与 Kubernetes 集群进行交互。它通常包含多个集群的配置,支持通过上下文&am…

【环境安装】重装Docker-26.0.2版本

【机器背景说明】Linux-Centos7;已有低版本的Docker 【目标环境说明】 卸载已有Docker,用docker-26.0.2.tgz安装包安装 1.Docker包下载 下载地址:Index of linux/static/stable/x86_64/ 2.卸载已有的Docker 卸载之前首先停掉服务 sudo…

字节跳动后端二面

📍1. 数据库的事务性质,InnoDB是如何实现的? 数据库事务具有ACID特性,即原子性、一致性、隔离性和持久性。InnoDB通过以下机制实现这些特性: 🚀 实现细节: 原子性:通过undo log实…

SpringBoot中使用MyBatis-Plus详细介绍

目录 一、MyBatis-Plus的使用步骤 1.引入MybatisPlus的起步依赖 2.定义Mapper(也叫dao)层的接口 3.MyBatis-Plus中常用注解 4. 使用MyBatis-Plus时要做如下配置 5.条件构造器 Wrapper 一、MyBatis-Plus的使用步骤 1.引入MybatisPlus的起步依赖 M…