AI基础 -- AI学习路径图

人工智能从数学到大语言模型构建教程

第一部分:AI 基础与数学准备

1. 绪论:人工智能的过去、现在与未来

  • 人工智能的定义与发展简史
  • 从符号主义到统计学习、再到深度学习与大模型的变迁
  • 本书内容概览与学习路径指引

2. 线性代数与矩阵运算

  • 向量与矩阵的基本概念
  • 矩阵分解(特征值分解、奇异值分解)
  • 张量运算简介(为后续深度学习做准备)
  • 在机器学习和深度学习中的应用示例

3. 概率论与统计基础

  • 随机变量、分布与期望方差
  • 贝叶斯理论与最大似然估计
  • 信息论(熵、KL 散度等)在机器学习中的应用
  • 大数定律与中心极限定理在模型训练与评估中的意义

4. 微积分与优化方法

  • 函数、微分、积分回顾
  • 梯度与偏导数,链式法则
  • 凸优化与非凸优化
  • 常用优化算法(梯度下降、牛顿法、随机梯度下降及其变体 Adam、RMSProp 等)

第二部分:传统机器学习与工程基础

5. 机器学习基础算法

  • 监督学习:回归(线性回归、岭回归、Lasso)与分类(逻辑回归、SVM、决策树等)
  • 无监督学习:聚类(K-Means、层次聚类等)、降维(PCA、t-SNE等)
  • 强化学习的初步概念(马尔可夫决策过程、值函数、策略)
  • 评估指标与交叉验证

6. 工程实践与数据处理

  • 数据采集与预处理:清洗、去噪、特征工程
  • 大规模数据存储与处理(分布式计算、Hadoop、Spark 等)
  • 特征选择与特征构造
  • Pipeline 与自动化训练流程管理

第三部分:深度学习原理与模型

7. 神经网络基础

  • 感知机与多层感知机(MLP)
  • 前向传播与反向传播
  • 激活函数(Sigmoid、ReLU、Tanh、Leaky ReLU 等)
  • 正则化与损失函数(L1/L2、Dropout、Batch Normalization 等)

8. 卷积神经网络(CNN)

  • 卷积操作与池化操作原理
  • 经典 CNN 架构介绍(Lenet、AlexNet、VGG、ResNet、Inception 等)
  • 在图像识别、目标检测等方面的应用
  • CNN 模型的优化技巧(数据增广、Batch Size、学习率调整等)

9. 循环神经网络(RNN)及其变体

  • RNN 的结构与梯度消失/爆炸问题
  • LSTM、GRU 等改进结构
  • 在时间序列、序列预测、文本数据处理等任务中的应用
  • 序列到序列模型(Seq2Seq)、注意力机制的早期引入

10. Transformer 与注意力机制

  • 自注意力(Self-Attention)的核心原理
  • Transformer 模型结构(Encoder、Decoder)
  • 优势与局限(并行化、长程依赖等)
  • 在机器翻译和语言理解任务上的应用案例

第四部分:NLP 核心技术与大语言模型

11. 自然语言处理基础

  • 词向量(Word2Vec、GloVe)与分词技术
  • 语料预处理与常见 NLP 任务(文本分类、情感分析、命名实体识别等)
  • 评测指标(BLEU、ROUGE、Perplexity 等)
  • 传统 NLP 模型回顾(n-gram、HMM、CRF 等)

12. 预训练模型与微调

  • 语言模型的概念(语言模型、Mask Language Model 等)
  • 预训练-微调范式的提出与意义
  • BERT 系列、GPT 系列、ELMo、T5 等典型预训练模型
  • 常见微调方法(全参数微调、Prefix Tuning、Adapter 等)

13. 大规模模型的训练与推理

  • 数据准备与大规模数据清洗
  • 分布式训练框架与并行策略(数据并行、模型并行、流水线并行)
  • 混合精度训练、梯度累积、检查点保存等高效训练技巧
  • 超大模型推理优化(Quantization、Knowledge Distillation 等)

14. 构建与部署大型语言模型的完整流程

  • 从零开始搭建一个简化版 Transformer 语言模型
  • 预训练、微调与评估的端到端示例
  • 模型压缩与部署(TensorRT、ONNX 等),服务化与 API 化
  • 线上推理性能监控与故障排查

15. 模型评估、对齐与伦理

  • 语言模型的评估:准确性、一致性、多样性等指标
  • 有害内容、偏见与道德风险
  • 对齐技术与价值观(RLHF 等)
  • 合规与隐私保护

第五部分:进阶与前沿

16. 多模态与跨领域应用

  • 图像与文本的融合(CLIP、ALIGN 等)
  • 文本与语音(ASR、TTS 以及语音聊天系统)
  • 知识图谱与大型语言模型结合
  • AI + IoT、AI + 医疗、AI + 金融等行业实践案例

17. 强化学习与决策智能

  • 深度强化学习(DQN、Policy Gradient、PPO 等)
  • 大模型 + 强化学习在对话系统与复杂任务中的应用
  • AutoML 与 NAS(网络结构搜索)

18. 可解释性与可控性

  • 模型可解释性框架(LIME、SHAP 等)
  • 大模型的可控文本生成方法
  • 对抗攻击与防御
  • 安全与可靠性研究前沿

19. MLOps 与企业级 AI 解决方案

  • 模型生命周期管理(数据版本控制、模型版本控制)
  • 持续训练与持续集成/部署(CI/CD)
  • 大规模分布式基础设施(Kubernetes、Kubeflow 等)
  • AI 产品化与落地案例

第六部分:未来展望与总结

20. 未来趋势与挑战

  • 超大规模模型的演化方向(多任务统一模型、通用人工智能雏形)
  • 新型计算架构(类脑计算、光子计算、量子计算)对 AI 的影响
  • 法规与社会影响(隐私、版权、伦理审查)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/69708.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【05】RUST常用的集合函数宏类型

文章目录 常用集合VecStringHashMap 宏打印 类型Option<T> 常用集合 Vec 堆上连续内存vector可能出现扩容&#xff0c;把老元素copy到内存新位置 因此不允许let first &v[0];作用域内调用v.push(4); // 定义 let v: Vec<i32> Vec::new(); let v vec![1,…

Unity-Mirror网络框架-从入门到精通之MultipleMatches示例

文章目录 前言MultipleMatchesLobbyViewRoomViewMatchGUIPlayerGUI总结前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。本系列文章将为读者提供对Mirror网络框架的深入了解,涵盖从基础到高级的多个主题。Mirror是一个用于Unity的开源网络框架,专为多人…

VMware Workstation创建虚拟机

目录 创建新的虚拟机 虚拟机快照功能 虚拟机添加空间 其他注意事项 创建新的虚拟机 打开VMware Workstation&#xff1a;启动软件后&#xff0c;点击“创建新的虚拟机”。 选择安装方式&#xff1a; 典型安装&#xff1a;适合大多数用户&#xff0c;会自动完成大部分配置…

DeepSeek AI R1推理大模型API集成文档

DeepSeek AI R1推理大模型API集成文档 引言 随着自然语言处理技术的飞速发展&#xff0c;大语言模型在各行各业的应用日益广泛。DeepSeek R1作为一款高性能、开源的大语言模型&#xff0c;凭借其强大的文本生成能力、高效的推理性能和灵活的接口设计&#xff0c;吸引了大量开发…

前后端交互方式

在现代 Web 开发中,前后端的高效交互是构建流畅、响应迅速应用的核心。随着技术的不断发展,传统的请求响应模型已不再满足复杂应用的需求。本文将探讨多种前后端交互的方式,从经典的 HTTP 请求到实时数据传输的 WebSocket、GraphQL 等协议,每种方法都有其独特的优势和适用场…

Node.js调用DeepSeek Api 实现本地智能聊天的简单应用

在人工智能快速发展的今天&#xff0c;如何快速构建一个智能对话应用成为了开发者们普遍关注的话题。本文将为大家介绍一个基于Node.js的命令行聊天应用&#xff0c;它通过调用硅基流动&#xff08;SiliconFlow&#xff09;的API接口&#xff0c;实现了与DeepSeek模型的智能对话…

活泼瘤胃球菌(Ruminococcus gnavus)——多种疾病风险的潜在标志物

​ 前几日&#xff0c;南方医科大学深圳医院院长周宏伟教授团队在国际顶尖医学期刊《Nature Medicine》上发表了一项重要研究。首次揭示一种名为活泼瘤胃球菌(Ruminococcus gnavus)的细菌产生的物质——苯乙胺&#xff0c;在肝性脑病发生中的关键作用。 ​ 同时谷禾的人群检测数…

8.flask+websocket

http是短连接&#xff0c;无状态的。 websocket是长连接&#xff0c;有状态的。 flask中使用websocket from flask import Flask, request import asyncio import json import time import websockets from threading import Thread from urllib.parse import urlparse, pars…

qiime2:安装与使用

试一下docker安装 docker pull quay.io/qiime2/amplicon:2024.10 docker images docker run -v {挂载的目录}:/data quay.io/qiime2/amplicon:2024.10 qiime -h使用 import.txt docker run -v ~/diarrhoea/MJ/qingzhu:/data quay.io/qiime2/amplicon:2024.10 qiime tools imp…

pair的使用(c++)

pair 是 C 标准库中的一个模板类&#xff0c;用于将两个值组合成一个单一对象&#xff0c;通常用于存储键值对或返回多个它有两个公有成员 first 和 second&#xff0c;分别表示第一个值和第二个值。 我们可以把pair 理解成 C为我们提供一个结构体&#xff0c;里面有两个变量:…

JUnit断言方法详解与实战

在Java开发中&#xff0c;JUnit是一个不可或缺的单元测试框架&#xff0c;而org.junit.Assert类中的断言方法则是JUnit的核心功能之一。通过这些方法&#xff0c;我们可以方便地验证代码的正确性。本文将详细介绍一些常用的断言方法&#xff0c;并通过实例展示它们的使用。 一、…

推荐算法实践:movielens数据集

MovieLens 数据集介绍 MovieLens 数据集是由明尼苏达大学的GroupLens研究小组维护的一个广泛使用的电影评分数据集&#xff0c;主要用于推荐系统的研究。该数据集包含用户对电影的评分、标签以及其他相关信息&#xff0c;是电影推荐系统开发与研究的常用数据源。 数据集版本 …

基于vue2 的 vueDraggable 示例,包括组件区、组件放置区、组件参数设置区 在同一个文件中实现

为了在Vue 2中实现一个包含组件区、组件放置区以及组件参数设置区的界面&#xff0c;我们可以使用vue-draggable库来处理拖拽功能&#xff0c;并结合其他UI组件库如Element UI来构建界面。下面是一个基本的示例&#xff0c;展示如何实现这样的布局。 第一步&#xff1a;安装必…

技术实战|ELF 2学习板本地部署DeepSeek-R1大模型的完整指南(一)

DeepSeek作为国产AI大数据模型的代表&#xff0c;凭借其卓越的推理能力和高效的文本生成技术&#xff0c;在全球人工智能领域引发广泛关注。DeepSeek-R1作为该系列最新迭代版本&#xff0c;实现了长文本处理效能跃迁、多模态扩展规划、嵌入式适配等技术维度的突破。 RK3588作为…

DeepSeek本地部署_桌面版AnythingLLM本地知识库搭建

一.DeepSeek本地部署 1.下载并安装&#xff1a;ollama Download Ollama on macOSDownload Ollama for macOShttps://ollama.com/download 安装是否成功确认&#xff0c;管理员权限运行PowerShell&#xff1a; ollama -h 2.下载安装DeepSeek 管理员方式运行PowerShell&#…

DeepSeek+3D视觉机器人应用场景、前景和简单设计思路

DeepSeek3D视觉机器人在多个领域具有广泛的应用场景和巨大的前景。以下是详细的分析&#xff1a; 应用场景 制造业 自动化装配&#xff1a;机器人可以精确地抓取和装配零件&#xff0c;提高生产效率和产品质量。 质量检测&#xff1a;通过3D视觉技术检测产品缺陷&#xff0c;确…

BGP基础协议详解

BGP基础协议详解 一、BGP在企业中的应用二、BGP概述2.1 BGP的特点2.2 基本配置演示2.3 抓包观察2.4 BGP的特征三、BGP对等体关系四、bgp报文4.1 BGP五种报文类型(重点)4.2 BGP报文格式-报文头格式4.3 Open报文格式4.4 Update报文格式4.5 Notification报文格式4.6 Route-refre…

2025.2.10 每日学习记录3:技术报告只差相关工作+补实验

0.近期主任务线 1.完成小论文准备 目标是3月份完成实验点1的全部实验和论文。 2.准备教资笔试 打算留个十多天左右&#xff0c;一次性备考笔试的三个科目 1.实习申请技术准备&#xff1a;微调、Agent、RAG 据央视财经&#xff0c;数据显示&#xff0c;截至2024年12月…

C++14 新特性解析

C++14 作为 C++11 的增量更新,主要目标是完善和扩展 C++11 的特性,提升开发效率和代码灵活性。以下是 C++14 的核心特性解析: 1. 通用 Lambda 表达式(Generic Lambdas) 说明:Lambda 参数支持 auto 关键字,使 Lambda 成为隐式的函数模板。示例:auto add = [](auto a, au…

第9章 城市基础设施更新工程 9.1 道路改造施工

9.1 道路改造施工 9.1.1 道路改造施工内容 沥青、水泥混凝土、砌块路面及人行步道、绿化照明、附属设施、交通标志。沥青路面材料的再生利用。 9.1.2 道路改造施工技术 1.沥青路面病害及微表处理 1.病害处理 裂缝处理 10mm以内 专用灌缝材料、热沥青灌缝、缝内潮湿时采用…