目标跟踪之sort算法(3)

这里写目录标题

  • 1 流程
      • 1 预处理
      • 2 跟踪
  • 2 代码

在这里插入图片描述
参考:sort代码 https://github.com/abewley/sort

1 流程

1 预处理

    1.1 获取离线检测数据。1.2 实例化跟踪器。

2 跟踪

2.1 轨迹处理。根据上一帧的轨迹预测当前帧的轨迹,剔除到当前轨迹中为空的轨迹得到当前有效轨迹。
2.2 匹配。用匈牙利算法对有效轨迹和检测框匹配,得到匹配id、新检测id、未匹配ida. 如果跟踪器的个数为零,即第一帧图像,返回值为0的匹配id、新检测id、值为0的未匹配id。b. 如果跟踪器的个数为不为0,则计算检测框与当前轨迹的iou,如果iou不为空,得到iou大于阈值的掩码矩阵,判断掩码矩阵每行是否跟每列是一一对应,如果是则不需要匈牙利算法匹配;反之,用匈牙利算法得到匹配的检测框和轨迹的索引。c. 根据匹配索引得到新检测的框的id和为匹配的轨迹的id。d.根据iou再筛选一次。
2.3 更新轨迹。a. 对匹配上的轨迹,根据匹配id得到当前帧的最优估计。b. 添加新的检测。对于没有被匹配上的检测框生成新的跟踪器,并添加到轨迹中。c. 筛选轨迹。

2 代码


"""  sort代码   https://github.com/abewley/sortSORT: A Simple, Online and Realtime TrackerCopyright (C) 2016-2020 Alex Bewley alex@bewley.aiThis program is free software: you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation, either version 3 of the License, or(at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program.  If not, see <http://www.gnu.org/licenses/>.-i https://pypi.tuna.tsinghua.edu.cn/simple
filterpy==1.4.5
scikit-image==0.14.0
lap==0.4.0
numba==0.38.1
scikit-learn==0.19.1
"""
from __future__ import print_functionimport os
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from skimage import ioimport glob
import time
import argparse
from filterpy.kalman import KalmanFilternp.random.seed(0)def linear_assignment(cost_matrix):try:import lap_, x, y = lap.lapjv(cost_matrix, extend_cost=True)return np.array([[y[i],i] for i in x if i >= 0])except ImportError:from scipy.optimize import linear_sum_assignmentx, y = linear_sum_assignment(cost_matrix)return np.array(list(zip(x, y)))def iou_batch(bb_test, bb_gt):"""From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2]"""bb_gt = np.expand_dims(bb_gt, 0)bb_test = np.expand_dims(bb_test, 1)xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])w = np.maximum(0., xx2 - xx1)h = np.maximum(0., yy2 - yy1)wh = w * ho = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])                                      + (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)                                              return(o)  def convert_bbox_to_z(bbox):"""Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r isthe aspect ratio"""w = bbox[2] - bbox[0]h = bbox[3] - bbox[1]x = bbox[0] + w/2.y = bbox[1] + h/2.s = w * h    #scale is just arear = w / float(h)return np.array([x, y, s, r]).reshape((4, 1))def convert_x_to_bbox(x,score=None):"""Takes a bounding box in the centre form [x,y,s,r] and returns it in the form[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right"""w = np.sqrt(x[2] * x[3])h = x[2] / wif(score==None):return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))else:return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))class KalmanBoxTracker(object):"""This class represents the internal state of individual tracked objects observed as bbox."""count = 0def __init__(self,bbox):"""Initialises a tracker using initial bounding box."""#define constant velocity modelself.kf = KalmanFilter(dim_x=7, dim_z=4) self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0],  [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])self.kf.R[2:,2:] *= 10.self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocitiesself.kf.P *= 10.self.kf.Q[-1,-1] *= 0.01self.kf.Q[4:,4:] *= 0.01self.kf.x[:4] = convert_bbox_to_z(bbox)self.time_since_update = 0self.id = KalmanBoxTracker.countKalmanBoxTracker.count += 1self.history = []self.hits = 0self.hit_streak = 0self.age = 0def update(self,bbox):"""Updates the state vector with observed bbox."""self.time_since_update = 0self.history = []self.hits += 1self.hit_streak += 1   # 连续匹配并更新的次数self.kf.update(convert_bbox_to_z(bbox))def predict(self):"""Advances the state vector and returns the predicted bounding box estimate."""if((self.kf.x[6]+self.kf.x[2])<=0):self.kf.x[6] *= 0.0self.kf.predict()self.age += 1if(self.time_since_update>0):  # 上一次更新距离现在的时间self.hit_streak = 0          # 匹配次数归0self.time_since_update += 1    # 轨迹只预测没有匹配的的次数➕1self.history.append(convert_x_to_bbox(self.kf.x))return self.history[-1]def get_state(self):"""Returns the current bounding box estimate."""return convert_x_to_bbox(self.kf.x)def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3):"""Assigns detections to tracked object (both represented as bounding boxes)Returns 3 lists of matches, unmatched_detections and unmatched_trackers"""if(len(trackers)==0):return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)iou_matrix = iou_batch(detections, trackers)if min(iou_matrix.shape) > 0:a = (iou_matrix > iou_threshold).astype(np.int32)if a.sum(1).max() == 1 and a.sum(0).max() == 1:matched_indices = np.stack(np.where(a), axis=1)  # 如果正好是一个检测与一个轨迹匹配,则找出匹配的索引else:matched_indices = linear_assignment(-iou_matrix)   # 匈牙利匹配,matched_indices存储的是每个检测框对应的轨迹,第一列存储的是检测框的id;第二列存储的是检测框匹配的轨迹idelse:matched_indices = np.empty(shape=(0,2))    unmatched_detections = []   # 寻找没有被匹配上的检测框for d, det in enumerate(detections):   # 这一步写的麻烦,不用枚举if(d not in matched_indices[:,0]):unmatched_detections.append(d)unmatched_trackers = []       # 寻找没有被匹配上的轨迹for t, trk in enumerate(trackers):if(t not in matched_indices[:,1]):unmatched_trackers.append(t)#filter out matched with low IOUmatches = []               # 寻找被匹配上的检测框的idfor m in matched_indices:  # 根据iou再进行一次筛选if(iou_matrix[m[0], m[1]]<iou_threshold):unmatched_detections.append(m[0])unmatched_trackers.append(m[1])else:matches.append(m.reshape(1,2))if(len(matches)==0):matches = np.empty((0,2),dtype=int)else:matches = np.concatenate(matches,axis=0)return matches, np.array(unmatched_detections), np.array(unmatched_trackers)class Sort(object):def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3):"""Sets key parameters for SORT"""self.max_age = max_ageself.min_hits = min_hitsself.iou_threshold = iou_thresholdself.trackers = []self.frame_count = 0def update(self, dets=np.empty((0, 5))):"""Params:dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).Returns the a similar array, where the last column is the object ID.NOTE: The number of objects returned may differ from the number of detections provided."""self.frame_count += 1# get predicted locations from existing trackers.trks = np.zeros((len(self.trackers), 5))   # 存储筛选后的轨迹。第一帧shape=(0, 5);to_del = []          # 没有匹配的轨迹ret = []             # 存放检测所有合格的轨迹for t, trk in enumerate(trks):pos = self.trackers[t].predict()[0]            # 根据上一帧的轨迹当前帧的轨迹.trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]if np.any(np.isnan(pos)):to_del.append(t)trks = np.ma.compress_rows(np.ma.masked_invalid(trks))  # 剔除当前无效轨迹for t in reversed(to_del):self.trackers.pop(t)     # 剔除上一帧中的无效轨迹matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks, self.iou_threshold)   # 第一帧没有轨迹,# update matched trackers with assigned detections  对匹配的轨迹更新for m in matched:  # 根据当前轨迹和检测得到当前最优估计self.trackers[m[1]].update(dets[m[0], :])# create and initialise new trackers for unmatched detectionsfor i in unmatched_dets:    # 对于没有被匹配上的检测框生成新的跟踪器,并添加到轨迹中trk = KalmanBoxTracker(dets[i,:])self.trackers.append(trk)i = len(self.trackers)for trk in reversed(self.trackers):d = trk.get_state()[0]if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): #(当前更新的轨迹)and (连续匹配超过min_hits or 检测帧数小于min_hits)ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positivei -= 1# remove dead trackletif(trk.time_since_update > self.max_age):self.trackers.pop(i)if(len(ret)>0):return np.concatenate(ret)return np.empty((0,5))def parse_args():"""Parse input arguments."""parser = argparse.ArgumentParser(description='SORT demo')parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true')parser.add_argument("--seq_path", help="Path to detections.", type=str, default='data')parser.add_argument("--phase", help="Subdirectory in seq_path.", type=str, default='train')parser.add_argument("--max_age", help="Maximum number of frames to keep alive a track without associated detections.", type=int, default=1)parser.add_argument("--min_hits", help="Minimum number of associated detections before track is initialised.", type=int, default=3)parser.add_argument("--iou_threshold", help="Minimum IOU for match.", type=float, default=0.3)args = parser.parse_args()return argsif __name__ == '__main__':# all trainargs = parse_args()display = args.display     # 是否显示结果phase = args.phase         # 'trian'total_time = 0.0           # 总时长total_frames = 0           # 记录检测的帧数colours = np.random.rand(32, 3) # \used only for display  [32,3]if(display):if not os.path.exists('mot_benchmark'):print('\n\tERROR: mot_benchmark link not found!\n\n    Create a symbolic link to the MOT benchmark\n    (https://motchallenge.net/data/2D_MOT_2015/#download). E.g.:\n\n    $ ln -s /path/to/MOT2015_challenge/2DMOT2015 mot_benchmark\n\n')exit()plt.ion()fig = plt.figure()ax1 = fig.add_subplot(111, aspect='equal')if not os.path.exists('output'):os.makedirs('output')pattern = os.path.join(args.seq_path, phase, '*', 'det', 'det.txt')   # 相对路径 'data/train/*/det/det.txt'# 1. 数据准备for seq_dets_fn in glob.glob(pattern):mot_tracker = Sort(max_age=args.max_age,              # 1.1 初始化跟踪器min_hits=args.min_hits,iou_threshold=args.iou_threshold)  # create instance of the SORT trackerseq_dets = np.loadtxt(seq_dets_fn, delimiter=',')     # 1.2 加载数据seq = seq_dets_fn[pattern.find('*'):].split(os.path.sep)[0]   # 'data/train/ETH-Bahnhof/det/det.txt' --> ['ETH-Bahnhof', 'det', 'det.txt'] --> 'ETH-Bahnhof'with open(os.path.join('output', '%s.txt'%(seq)),'w') as out_file:   # 'output/ETH-Bahnhof.txt'print("Processing %s."%(seq))for frame in range(int(seq_dets[:,0].max())):        # seq_dets[:,0]第一列为图片的序列号,遍历每一帧的检测结果frame += 1                       # detection and frame numbers begin at 1dets = seq_dets[seq_dets[:, 0]==frame, 2:7]   # x1,y1,w,h,cdets[:, 2:4] += dets[:, 0:2]     # convert to [x1,y1,w,h] to [x1,y1,x2,y2]total_frames += 1if(display):fn = os.path.join('mot_benchmark', phase, seq, 'img1', '%06d.jpg'%(frame))im = io.imread(fn)ax1.imshow(im)plt.title(seq + ' Tracked Targets')start_time = time.time()trackers = mot_tracker.update(dets)  # 2. 获取跟踪结果cycle_time = time.time() - start_timetotal_time += cycle_timefor d in trackers:  # 画的是跟踪到的轨迹print('%d,%d,%.2f,%.2f,%.2f,%.2f,1,-1,-1,-1'%(frame,d[4],d[0],d[1],d[2]-d[0],d[3]-d[1]),file=out_file)if(display):d = d.astype(np.int32)ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=3,ec=colours[d[4]%32,:]))if(display):fig.canvas.flush_events()plt.draw()ax1.cla()print("Total Tracking took: %.3f seconds for %d frames or %.1f FPS" % (total_time, total_frames, total_frames / total_time))if(display):print("Note: to get real runtime results run without the option: --display")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/68457.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

solidity高阶 -- 线性继承

Solidity是一种面向合约的高级编程语言&#xff0c;用于编写智能合约。在Solidity中&#xff0c;多线继承是一个强大的特性&#xff0c;允许合约从多个父合约继承属性和方法。本文将详细介绍Solidity中的多线继承&#xff0c;并通过不同的实例展示其使用方法和注意事项。 在Sol…

神经网络|(七)概率论基础知识-贝叶斯公式

【1】引言 前序我们已经了解了一些基础知识。 古典概型&#xff1a;有限个元素参与抽样&#xff0c;每个元素被抽样的概率相等。 条件概率&#xff1a;在某条件已经达成的前提下&#xff0c;新事件发生的概率。实际计算的时候&#xff0c;应注意区分&#xff0c;如果是计算综…

双目立体校正和Q矩阵

立体校正 对两个摄像机的图像平面重投影&#xff0c;使二者位于同一平面&#xff0c;而且左右图像的行对准。 Bouguet 该算法需要用到双目标定后外参(R&#xff0c;T) 从上图中可以看出&#xff0c;该算法主要分为两步&#xff1a; 使成像平面共面 这个办法很直观&#xff…

软件开发中的密码学(国密算法)

1.软件行业中的加解密 在软件行业中&#xff0c;加解密技术广泛应用于数据保护、通信安全、身份验证等多个领域。加密&#xff08;Encryption&#xff09;是将明文数据转换为密文的过程&#xff0c;而解密&#xff08;Decryption&#xff09;则是将密文恢复为明文的过程。以下…

C语言练习(29)

13个人围成一圈&#xff0c;从第1个人开始顺序报号1、2、3。凡报到“3”者退出圈子&#xff0c;找出最后留在圈子中的人原来的序号。本题要求用链表实现。 #include <stdio.h> #include <stdlib.h>// 定义链表节点结构体 typedef struct Node {int num;struct Nod…

postgres基准测试工具pgbench如何使用自定义的表结构和自定义sql

使用 pgbench 进行 PostgreSQL 性能测试时&#xff0c;可以自定义表结构和测试脚本来更好地模拟实际使用场景。以下是一个示例&#xff0c;说明如何自定义表结构和测试脚本。 自定义表结构 创建自定义表结构的 SQL 脚本。例如&#xff0c;创建一个名为 custom_schema.sql 的文…

5.2 软件需求分析

文章目录 需求分析的意义软件需求的组成需求分析的5个方面需求分析方法 需求分析的意义 需求分析解决软件“做什么”的问题。由于开发人员比较熟悉计算机而不熟悉领域业务&#xff0c;用户比较熟悉领域业务而不熟悉计算机&#xff0c;双方需要通过交流&#xff0c;制定出完整、…

Linux 如何使用fdisk进行磁盘相关的操作

简介 fdisk 命令是 Linux 中用于管理磁盘分区的强大文本实用程序。它可以创建、删除、调整大小和修改硬盘上的分区。 基本语法 fdisk [options] <device> <device>&#xff1a;要管理的磁盘&#xff0c;例如 /dev/sda、/dev/nvme0n1 或 /dev/vda 示例用法 列…

理解神经网络:Brain.js 背后的核心思想

温馨提示 这篇文章篇幅较长,主要是为后续内容做铺垫和说明。如果你觉得文字太多,可以: 先收藏,等后面文章遇到不懂的地方再回来查阅。直接跳读,重点关注加粗或高亮的部分。放心,这种“文字轰炸”不会常有的,哈哈~ 感谢你的耐心阅读!😊 欢迎来到 brain.js 的学习之旅!…

GPU上没程序在跑但是显存被占用

原因&#xff1a;存在僵尸线程&#xff0c;运行完但是没有释放内存 查看僵尸线程 fuser -v /dev/nvidia*关闭僵尸线程 pkill -9 -u 用户名 程序名 举例&#xff1a;pkill -9 -u grs python参考&#xff1a;https://blog.csdn.net/qq_40206371/article/details/143798866

大数据Hadoop入门3

第五部分&#xff08;Apache Hive DML语句和函数使用&#xff09; 1.课程内容大纲和学习目标 2.Hive SQL-DML-load加载数据操作 下面我们随机创建文件尝试一下 先创建一个hivedata文件夹 在这个文件夹中写一个1.txt文件 下面使用beeline创建一张表 只要将1.txt文件放在t_1文件…

WordPress event-monster插件存在信息泄露漏洞(CVE-2024-11396)

免责声明: 本文旨在提供有关特定漏洞的深入信息,帮助用户充分了解潜在的安全风险。发布此信息的目的在于提升网络安全意识和推动技术进步,未经授权访问系统、网络或应用程序,可能会导致法律责任或严重后果。因此,作者不对读者基于本文内容所采取的任何行为承担责任。读者在…

02数组+字符串+滑动窗口+前缀和与差分+双指针(D5_双指针)

目录 一、基本介绍 二、算法思想 三、算法模型 1. 对撞指针 2. 快慢指针 3. 滑动窗口 一、基本介绍 双指针是一种应用很广泛且基础的算法&#xff0c;严格来说双指针不是算法更像是一种思想。 双指针中的“指针” 不仅仅是大家所熟知的C/C里面的地址指针&#xff0c;还是…

【Pytest】结构介绍

1.目录结构介绍 project_root/ │ ├── tests/ # 测试用例存放目录 │ ├── __init__.py │ ├── test_module1.py │ ├── module1.py # 被测试的模块 ├── conftest.py # pytest配置文件&#xff0c;可定义fixture和钩子函数 ├── py…

网易云音乐歌名可视化:词云生成与GitHub-Pages部署实践

引言 本文将基于前一篇爬取的网易云音乐数据, 利用Python的wordcloud、matplotlib等库, 对歌名数据进行深入的词云可视化分析. 我们将探索不同random_state对词云布局的影响, 并详细介绍如何将生成的词云图部署到GitHub Pages, 实现数据可视化的在线展示. 介绍了如何从原始数据…

const的用法

文章目录 一、C和C中const修饰变量的区别二、const和一级指针的结合const修饰的量常出现的错误是:const和一级指针的结合总结&#xff1a;const和指针的类型转换公式 三、const和二级指针的结合 一、C和C中const修饰变量的区别 C中&#xff1a;const必须初始化&#xff0c;叫常…

AI DeepSeek

DeepSeek 文字解析 上传图片解析 视乎结果出入很大啊&#xff0c;或许我们应该描述更加清楚自己的需求。

Rust:Rhai脚本编程示例

当然&#xff0c;以下是一个简单的Rhai脚本编程示例&#xff0c;展示了如何在Rust中使用Rhai执行脚本。 首先&#xff0c;你需要确保你的Rust项目中包含了rhai库。你可以在你的Cargo.toml文件中添加以下依赖项&#xff1a; [dependencies] rhai "0.19" # 请检查最…

CTF-web: Python YAML反序列化利用

PyYAML存在以下几个特殊标签,如果这些标签被不安全的解析,会造成解析漏洞 从 PyYaml 版本 6.0 开始&#xff0c;load 的默认加载器已切换到 SafeLoader&#xff0c;以降低远程代码执行的风险。更新后易受攻击的是 yaml.unsafe_load 和 yaml.load(input, Loaderyaml.UnsafeLoade…

996引擎 - NPC-动态创建NPC

996引擎 - NPC-动态创建NPC 创建脚本服务端脚本客户端脚本添加自定义音效添加音效文件修改配置参考资料有个小问题,创建NPC时没有控制朝向的参数。所以。。。自己考虑怎么找补吧。 多重影分身 创建脚本 服务端脚本 Mir200\Envir\Market_Def\test\test001-3.lua -- NPC八门名…