opencv——图片矫正

图像矫正

图像矫正的原理是透视变换,下面来介绍一下透视变换的概念。

听名字有点熟,我们在图像旋转里接触过仿射变换,知道仿射变换是把一个二维坐标系转换到另一个二维坐标系的过程,转换过程坐标点的相对位置和属性不发生变换,是一个线性变换,该过程只发生旋转和平移过程。因此,一个平行四边形经过仿射变换后还是一个平行四边形。

而透视变换是把一个图像投影到一个新的视平面的过程,在现实世界中,我们观察到的物体在视觉上会受到透视效果的影响,即远处的物体看起来会比近处的物体小。透视投影是指将三维空间中的物体投影到二维平面上的过程,这个过程会导致物体在图像中出现形变和透视畸变。透视变换可以通过数学模型来校正这种透视畸变,使得图像中的物体看起来更符合我们的直观感受。通俗的讲,透视变换的作用其实就是改变一下图像里的目标物体的被观察的视角。

 

其中x、y是原始图像点的坐标,$x^{\prime}$、$y^{\prime}$是变换后的坐标,a11,a12,…,a33则是一些旋转量和平移量,由于透视变换矩阵的推导涉及三维的转换,所以这里不具体研究该矩阵,只要会使用就行,而OpenCV里也提供了getPerspectiveTransform()函数用来生成该3*3的透视变换矩阵。

例如:

  

cv2.getPerspectiveTransform(src, dst)

功能:cv2.getPerspectiveTransform(src, dst)

参数:

src: 源图像中的四个点,通常是一个形状为 (4, 2) 的 numpy 数组或类似的数据结构,表示四个点的坐标。这四个点应该按照某种顺序排列(例如,顺时针或逆时针),因为变换矩阵的计算依赖于这个顺序。

dst: 目标图像中的四个点,与 src 参数类似,也是一个形状为 (4, 2) 的 numpy 数组或类似的数据结构,表示变换后四个点应该位于的位置。

函数返回一个 3x3 的变换矩阵,可以使用 cv2.warpPerspective() 函数将这个矩阵应用于图像,从而执行透视变换。

cv2.warpPerspective(src, M, dsize, dst=None, flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=None)

功能:用于对图像进行透视变换的函数

参数:

src: 输入图像,即你想要进行透视变换的源图像。

M: 透视变换矩阵,通常是一个 3x3 的矩阵,可以通过 cv2.getPerspectiveTransform() 函数计算得到。这个矩阵定义了源图像中的点如何映射到目标图像中的点。

dsize: 输出图像的尺寸,以 (width, height) 的形式表示。这是变换后图像的尺寸。

dst: 输出图像,这是一个可选参数。

flags: 插值方法。

borderMode: 边界填充方法。

borderValue: 边界颜色【可选】。

import cv2
import numpy as npimg = cv2.imread('../1iamge/test3.jpg')points1 = np.float32([[420,155],[787,314],[12,522],[412,741]])
points2 = np.float32([[min(points1[:,0]),min(points1[:,1])],[max(points1[:,0]),min(points1[:,1])],[min(points1[:,0]),max(points1[:,1])],[max(points1[:,0]),max(points1[:,1])],])
M = cv2.getPerspectiveTransform(points1,points2)
img_warp = cv2.warpPerspective(img,M,(img.shape[1],img.shape[0]))
cv2.imshow('img',img)
cv2.imshow('img_warp',img_warp)
cv2.waitKey(0)

原图: 

效果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/63851.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV中的边缘检测和轮廓处理

在图像处理和计算机视觉任务中,边缘检测和轮廓处理是非常重要的步骤。OpenCV库提供了多种函数来实现这些功能,包括Sobel算子、Laplacian算子、Canny算子、findContours函数、drawContours函数以及透视变换函数等。本文将详细介绍这些函数的功能、参数、返…

flex 弹性布局 笔记

<style> /* flex-direction &#xff08;即项目的排列方向&#xff09; flex-wrap &#xff08;换行&#xff09; flex-flow &#xff08; flex-direction属性和flex-wrap属性的简写形式&#xff09; justify-content &#xff08;项目的对齐方向&#xff09;主轴…

解决vue2中更新列表数据,页面dom没有重新渲染的问题

在 Vue 2 中&#xff0c;直接修改数组的某个项可能不会触发视图的更新。这是因为 Vue 不能检测到数组的索引变化或对象属性的直接赋值。为了确保 Vue 能够正确地响应数据变化&#xff0c;你可以使用以下几种方法&#xff1a; 1. 使用 Vue.set() 使用 Vue.set() 方法可以确保 …

记录:ubuntu24.04源码安装nginx

一. 下载Nginx源码 两个地址二选一即可 Nginx官网Nginx官网 Github eg&#xff1a;nginx-1.27.3.tar.gz 下载到 ubuntu24.04 的 Downloads &#xff0c;解压 cd Downloads tar -zxvf nginx-1.27.3.tar.gz二. 编译安装 Note: 编译最好用 root 权限&#xff0c; 使用下面命令…

在AWS EMR上用Hive、Spark、Airflow构建一个高效的ETL程序

在AWS EMR&#xff08;Elastic MapReduce&#xff09;上构建一个高效的ETL程序&#xff0c;使用Hive作为数据仓库&#xff0c;Spark作为计算引擎&#xff0c;Airflow作为调度工具时&#xff0c;有几个关键的设计与实施方面需要注意。 在AWS EMR上构建高效的ETL程序&#xff0c;…

CNCF云原生生态版图

CNCF云原生生态版图 概述什么是云原生生态版图如何使用生态版图 项目和产品&#xff08;Projects and products&#xff09;会员&#xff08;Members&#xff09;认证合作伙伴与提供商&#xff08;Certified partners and providers&#xff09;无服务&#xff08;Serverless&a…

【java】finalize方法

目录 1. 说明2. 调用过程3. 注意事项 1. 说明 1.finalize方法是Java中Object类的一个方法。2.finalize方法用于在对象被垃圾回收之前执行一些清理工作。3.当JVM&#xff08;Java虚拟机&#xff09;确定一个对象不再被引用、即将被回收时&#xff0c;会调用该对象的finalize方法…

小程序开发实战项目:构建简易待办事项列表

随着移动互联网的飞速发展&#xff0c;小程序以其便捷性、即用即走的特点&#xff0c;成为了连接用户与服务的重要桥梁。无论是电商平台的购物助手&#xff0c;还是餐饮行业的点餐系统&#xff0c;小程序都在各个领域发挥着巨大的作用。 小程序开发基础 1. 小程序简介 小程序是…

wsl2子系统ubuntu发行版位置迁移步骤

默认的wsl2发行版是安装在windos的c盘&#xff0c;占用空间较大&#xff0c;有迁移需求&#xff0c;也可以迁移到其他电脑&#xff1b; 查看现有发行版信息 运行以下命令查看现有的 WSL 发行版及其状态&#xff1a; wsl --list --verbose# 输出示例NAME STATE …

SpringBoot基于Redis+WebSocket 实现账号单设备登录.

引言 在现代应用中&#xff0c;一个账号在多个设备上的同时登录可能带来安全隐患。为了解决这个问题&#xff0c;许多应用实现了单设备登录&#xff0c;确保同一个用户只能在一个设备上登录。当用户在新的设备上登录时&#xff0c;旧设备会被强制下线。 本文将介绍如何使用 Spr…

加速合并,音频与字幕的探讨

因上一节。合并时速度太慢了。显卡没用上。所以想快一点。1分钟的视频用了5分钟。 在合并视频时,进度条中的 now=None 通常表示当前处理的时间点没有被正确记录或显示。这可能是由于 moviepy 的内部实现细节或配置问题。为了加快视频合并速度并利用 GPU 加速,可以采取以下措…

MVC配置文件及位置

配置文件位置 默认位置 WEB-INF目录下&#xff0c;文件名&#xff1a;<servlet-name>-servlet.xml <?xml version"1.0" encoding"UTF-8"?> <web-app xmlns"http://xmlns.jcp.org/xml/ns/javaee"xmlns:xsi"http://www.w3.…

代码随想录算法训练营打卡第35天:背包问题

前言 zaccheo打卡代码随想录第35天 由于这段时间工作太忙了&#xff08;加上我的懒病犯了&#xff09;导致迟打卡了好几天555555.。。。 今天的主要是动态规划中的背包问题&#xff0c;这个真的是蛮难理解的&#xff0c;我把我自己强行按在椅子上半个小时一点一点的看卡哥文章…

【若依项目-RuoYi】掌握若依前端的基本流程

搞毕设项目&#xff0c;使用前后端分离技术&#xff0c;后端springBoot&#xff0c;前端vue3element plus。自己已经写好前端与后端代码&#xff0c;但想换一个前端界面所以使用到了若依&#xff0c;前前后后遇到许多坑&#xff0c;记录一下&#xff0c;方便之后能够快速回忆。…

Python 单例模式工厂模式和classmethod装饰器

前言&#xff1a; Python作为面向对象的语言&#xff0c;显然支持基本的设计模式。也具备面向对象的语言的基本封装方法&#xff1a;属性、方法、继承、多态等。但是&#xff0c;做为强大的和逐渐发展的语言&#xff0c;python也有很多高级的变种方法&#xff0c;以适应更多的…

图像边缘检测示例(综合利用阈值分割、数学形态学和边缘检测算子)

一、问题 读入一副灰度图像&#xff08;如果是彩色图像&#xff0c;可以先将其转化为灰度图像&#xff09;&#xff0c;然后提取比较理想的灰度图像边缘。这里以moon.tif为例。 二、算法 大家一开始容易想到直接利用MATLAB的内置函数edge并采用不同边缘提取算子进行边缘提取&a…

[高考] 学习数学的难点

最近想看一些机器学习的书&#xff0c;发现很多概念&#xff0c;很多符号&#xff0c;很多地方是&#xff0c;不知道具体的意思&#xff0c;不懂其中的内涵&#xff0c;所以需要再重新查阅很多的资料&#xff0c;去理解作者每句话是什么意思。 总结一下难点。以詹姆斯-斯图尔特…

R语言的数据结构-向量

【图书推荐】《R语言医学数据分析实践》-CSDN博客 《R语言医学数据分析实践 李丹 宋立桓 蔡伟祺 清华大学出版社9787302673484》【摘要 书评 试读】- 京东图书 (jd.com) R语言编程_夏天又到了的博客-CSDN博客 在R语言中&#xff0c;数据结构是非常关键的部分&#xff0c;它提…

js 抢红包场景

核心是实际业务场景问题和精度控制问题 class RedPackage {constructor(money, num) {this._money moneythis._num num}getRandomMoney () {if(this._num 1) return this._moneyconst mm parseInt(((this._money - ((this._num -1) * 0.01)) * Math.random() 0.01) * Mat…

集成方案 | Docusign + 泛微,实现全流程电子化签署!

本文将详细介绍 Docusign 与泛微的集成步骤及其效果&#xff0c;并通过实际应用场景来展示 Docusign 的强大集成能力&#xff0c;以证明 Docusign 集成功能的高效性和实用性。 在现代企业运营中&#xff0c;效率和合规性是至关重要的。泛微作为企业级办公自动化和流程管理的解决…