Python OpenCV按照像素点图片切割

图像分割是从图像处理到图像分析的关键步骤,在目标检测、特征提取、图像识别等领域具有广泛应用。OpenCV是一个强大的计算机视觉库,提供了多种图像分割方法。本文将详细介绍如何使用Python和OpenCV进行基于像素点的图像分割,包括阈值分割、自适应阈值分割、Otsu’s二值化、分水岭算法、GrabCut算法、SLIC超像素分割和基于深度学习的分割方法。

一、图像分割的理论概述
  1. 阈值分割

    阈值分割是最基础的图像分割方法之一,通过设定一个阈值将像素分为两组:前景和背景。该方法假设图像中的目标和背景的灰度值差异较大,存在一个合适的阈值,使得灰度值高于该阈值的像素被划分为目标,灰度值低于该阈值的像素被划分为背景。

  2. 自适应阈值分割

    自适应阈值分割能够根据图像的不同区域自动调整阈值,适用于光照不均的场景。该方法将图像划分为多个小区域(子块),每个子块分别计算阈值进行分割。

  3. Otsu’s二值化

    Otsu’s二值化是一种自动寻找最佳阈值的方法,特别适合于单峰分布的图像。它遍历所有可能的阈值,计算类间方差,当类间方差最大时的阈值即为最佳阈值。

  4. 分水岭算法

    分水岭算法常用于分割紧密相连的对象,通过模拟水流汇聚过程找到图像中的边界。该方法首先计算图像的距离变换,然后通过形态学操作找到局部最大值,最后应用分水岭算法得到分割结果。

  5. GrabCut算法

    GrabCut是一种半自动的图像分割方法,需要用户给出初步的前景和背景区域。该方法通过迭代优化算法不断调整前景和背景的掩膜,最终得到分割结果。

  6. SLIC超像素分割

    SLIC(Simple Linear Iterative Clustering)是一种快速的超像素分割方法,能将图像划分为多个小的、连贯的区域。该方法基于聚类算法,将图像像素聚类成多个超像素块。

  7. 基于深度学习的分割方法

    基于深度学习的分割方法可以实现更高级的图像分割任务,如语义分割和实例分割。这些方法通常使用卷积神经网络(CNN)进行训练,能够自动学习图像特征并进行像素级别的分类。

二、代码示例

以下是使用Python和OpenCV进行图像分割的详细代码示例。

import cv2
import numpy as np
import matplotlib.pyplot as plt
from skimage.segmentation import slic
import tensorflow as tf# 读取图像并转换为灰度
img = cv2.imread('image.jpg', 0)# 1. 阈值分割
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
plt.imshow(thresh, cmap='gray')
plt.title('Thresholding')
plt.show()# 2. 自适应阈值分割
adaptive_thresh = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
plt.imshow(adaptive_thresh, cmap='gray')
plt.title('Adaptive Thresholding')
plt.show()# 3. Otsu's二值化
ret, otsu = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
plt.imshow(otsu, cmap='gray')
plt.title('Otsu\'s Binarization')
plt.show()# 4. 分水岭算法
D = cv2.distanceTransform(img, cv2.DIST_L2, 5)
localMax = cv2.dilate(D, None, iterations=2)
markers = cv2.watershed(cv2.cvtColor(img, cv2.COLOR_GRAY2BGR), localMax)
markers = cv2.cvtColor(markers, cv2.COLOR_BGR2RGB)
plt.imshow(markers)
plt.title('Watershed Segmentation')
plt.show()# 5. GrabCut算法
mask = np.zeros(img.shape[:2], np.uint8)
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)
rect = (50, 50, 450, 290)
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)
mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')
img = img * mask2[:, :, np.newaxis]
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.title('GrabCut')
plt.show()# 6. SLIC超像素分割
segments_slic = slic(img, n_segments=200, compactness=10, sigma=1)
plt.imshow(segments_slic)
plt.title('SLIC Superpixels')
plt.show()# 7. 基于深度学习的分割方法(示例代码简化,实际应用需安装并配置相关深度学习框架)
# model = tf.keras.models.load_model('your_model.h5')
# predictions = model.predict(img[np.newaxis, :, :, np.newaxis])  # 注意输入形状可能需要调整
# plt.imshow(predictions[0, :, :, 0], cmap='gray')  # 假设输出是单通道图像
# plt.title('Deep Learning Segmentation')
# plt.show()
三、注意事项和后续处理
  1. 自动阈值选择

    在处理光照变化较大的场景时,尝试使用Otsu’s二值化或自适应阈值分割,以获得更好的分割效果。

  2. 噪声处理

    在应用阈值分割前,使用高斯模糊或中值滤波去除图像噪声,提高分割精度。

  3. 标记初始化

    分水岭算法的效果很大程度上取决于初始标记的设置。尝试使用形态学运算或边缘检测结果作为初始标记,可以显著提高分割质量。

  4. 后处理

    分割后的结果可能包含一些小的噪声区域,可以通过开闭运算进行清理。

  5. 精细调整

    GrabCut的结果可以通过手动调整前景和背景的掩膜来进一步优化,尤其在对象边界不清晰的情况下。

  6. 迭代次数

    增加迭代次数可以提高分割精度,但也会增加计算时间,需要根据具体需求权衡。

  7. 参数选择

    SLIC超像素分割中的n_segmentscompactness参数直接影响超像素的数量和大小。较小的n_segments值会生成更大的超像素,而较高的compactness值会使超像素更接近圆形。

  8. 后续处理

    超像素分割可以作为后续图像处理任务的基础,如颜色直方图计算或特征提取。

  9. 数据增强和迁移学习

    在训练深度学习模型时,使用数据增强技术(如旋转、翻转、缩放)可以增加模型的泛化能力。利用预训练的模型进行迁移学习,可以大大减少训练时间和所需的标注数据量。

四、总结

本文详细介绍了使用Python和OpenCV进行基于像素点的图像分割的方法,包括阈值分割、自适应阈值分割、Otsu’s二值化、分水岭算法、GrabCut算法、SLIC超像素分割和基于深度学习的分割方法。不同的分割方法有其适用场景,选择最适合当前问题的技术是关键。在处理实时视频流或大规模数据集时,效率和速度变得尤为重要,需要对算法进行适当的优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/63673.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

selenium:新窗口切换、关闭

背景 当前页面A,点击跳转到页面B 句柄就是你点击一个页面,跳转了一个新的窗口。你要操作的元素可能在原窗口上,也有可能在新窗口上。 通过索引定位 window_handles driver.window_handlesdriver.switch_to.window(window_handles[1])#定位到第二个通过当前页面的…

Kubernetes和ZStack分配CPU的机制

在 Kubernetes (k8s) 环境中限制 CPU 资源与在 ZStack 虚拟机中分配 CPU 资源的机制存在一些关键差异。以下是这两种环境下 CPU 分配机制的详细对比: Kubernetes 中的 CPU 管理 资源请求与限制:Kubernetes 允许你为每个容器指定 CPU 请求(re…

深度学习中的损失函数

损失函数是深度学习模型训练过程中不可或缺的一部分,是模型预测值与真实值之间差异的客观衡量标准。它们是模型训练的基础,指导算法调整模型参数,以最小化损失并提高预测准确性。它们衡量了模型预测值与真实值的吻合程度。通过最小化这种损失…

#自定义数据类型-简单模拟进程执行

#include <iostream> #include <string> #include <iomanip> using namespace std;//定义一个名为process的结构体&#xff0c;用于表示进程相关信息 //包含进程名、进程ID、进程优先级、进程状态、进程所需CPU时间、进程描述等成员 struct process {string …

KNN算法做预测的几个例子

准备工作 # 安装机器学习算法所用到的第三方库 pip install numpy pip install pandas pip install scikit-learn pip install matplotlibKNN算法 示例一&#xff1a; 鸢尾花数据集分类 Iris也称鸢尾花卉数据集&#xff0c;是一类多重变量分析的数据集。数据集包含150个数据…

【论文阅读】处理器芯片敏捷设计方法:问题与挑战

作者&#xff1a;包云岗老师 包云岗老师是计算机体系结构方向的大牛&#xff0c;推动了体系结构方面的开源事业! 欢迎对本栏目感兴趣的人学习"一生一芯"~ 学习体会&#xff1a; 已有的软硬件生态系统和开发成本制约了对新结构的探索。但目前仍在几种路线上做尝试~ 1…

20. 内置模块

一、random模块 random 模块用来创建随机数的模块。 random.random() # 随机生成一个大于0且小于1之间的小数 random.randint(a, b) # 随机生成一个大于等于a小于等于b的随机整数 random.uniform(a, b) …

嵌入式的软实时和硬实时系统

我觉得嵌入式的软实时和硬实时系统&#xff0c;一定要在应用场景里面去判断。假如你的需求是一个任务的执行时间&#xff0c;必须在2ms内响应&#xff0c;那么你选择的一个系统&#xff0c;系统的设计最晚响应时间是10us&#xff0c;那么这个系统对你来说就是硬实时的。 而且这…

Redis原理—4.核心原理摘要

大纲(9870字) 1.Redis服务器的Socket网络连接建立 2.Redis多路复用监听与文件事件模型 3.基于队列串行化的文件事件处理机制 4.完整的Redis Server网络通信流程 5.Redis串行化单线程模型为什么能高并发 6.Redis内核级请求处理流程与原理 7.Redis通信协议与内核级请求数据…

【UE5】制作插件 并调试【vs2022】

视频教程&#xff1a;好看视频-轻松有收获 https://www.youtube.com/watch?vIjpa9mI2b5I 官方&#xff1a;https://dev.epicgames.com/documentation/zh-cn/unreal-engine/plugins-in-unreal-engine 原文&#xff1a;【UE】制作插件_ue插件-CSDN博客 C制作插件 1. 我们可…

cocos creator 的 widget组件的使用及踩坑

以下的内容基于cocos creator 3.8版本&#xff0c;如有错误&#xff0c;恳请指出。 &#x1f449;官方文档的指引 应用&#xff1a;以上官方指引有非常清晰的使用方式&#xff0c;接下来说明一些注意事项&#xff1a; 1、与canvas搭配的使用&#xff0c;解决多分别率适配问题。…

十五、K8s计划任务JobCronJob

K8s计划任务CronJob&Job 一、Job可以干什么 Job 控制器用于管理 Pod 对象运行一次性任务,比方说我们对数据库备份,可以直接在 k8s 上启动一个 mysqldump 备份程序,也可以启动一个 pod,这个 pod 专门用来备份用的,备份结束 pod 就可以终止了,不需要重启,而是将 Pod…

关于LinuxWindows双系统在八月更新后出现的问题

问题描述类似于&#xff1a;Verifying shim SBAT data failed: If you are, this is caused by a reported problem in the August update if you can get into Windows, either uninstall the August update, or open Command Prompt as administrator and run this command,…

【Elasticsearch 中间件】Elasticsearch 客户端使用案例

文章目录 一、安装 Elasticsearch1.1 启动 Elasticsearch1.2 启动 Kibana 二、客户端代码2.1 导入依赖2.2 配置 application.yaml2.3 定义实体类2.4 连接 Elasticserach2.5 定义 Service 层接口2.6 实现 Service 层功能 三、测试项目3.1 添加数据3.2 搜索数据3.3 更新数据3.4 删…

一文掌握 OpenGL 几何着色器的使用

学习本文需要具备 OpenGL ES 编程基础,如果看起来比较费劲,可以先看入门文章 OpenGL ES 3.0 从入门到精通系统性学习教程 。 什么是几何着色器 几何着色器(Geometry Shader) OpenGL 管线中的可选着色器阶段,位于顶点着色器(Vertex Shader) 和光栅化阶段 之间。 其核心…

C++中多态

1) 什么是多态性&#xff1f;C中如何实现多态&#xff1f; 多态性是指通过基类指针或引用调用派生类的函数&#xff0c;实现不同的行为 多态性可以提高代码的灵活性和可扩展性&#xff0c;使程序能够根据不同的对象类型执行不同的操作。 2&#xff09;C中如何实现多态&#…

PHP语法学习(第十天)—PHP 表单

各位&#x1f9cd;‍♂️ 周一愉快♪٩(ω)و♪ 我是练小杰&#xff0c;今天开启新的篇章——PHP 表单 另外&#xff0c;想要学习更多PHP语法相关内容点击 “PHP专栏”~~~ 今天由我强哥来带领大家学习~~ 文章目录 PHP 表单简介表单的基本结构表单数据操作PHP 中的 $_POST 和 $_…

跟李笑来学美式俚语(Most Common American Idioms): Part 67

Most Common American Idioms: Part 67 前言 本文是学习李笑来的Most Common American Idioms这本书的学习笔记&#xff0c;自用。 Github仓库链接&#xff1a;https://github.com/xiaolai/most-common-american-idioms 使用方法: 直接下载下来&#xff08;或者clone到本地…

卫生巾检测项目、检测标准梳理

为了确保卫生巾在使用过程中具备良好的吸收性、舒适性、透气性&#xff0c;并且符合卫生安全标准&#xff0c;避免对人体健康造成不良影响&#xff0c;需要对其进行一系列检测。 名找我 一、检测项目 外观质量 检查卫生巾的形状、尺寸是否与标识相符&#xff0c;表面是否平整…

windows C#-声明和使用读/写属性

属性提供了公共数据成员的便利性&#xff0c;且不会产生未受保护、不可控制和未经验证地访问对象的数据的风险。 属性声明访问器&#xff1a;从基础数据成员中赋值和检索值的特殊方法。 set 访问器可分配数据成员&#xff0c;get 访问器检索数据成员值。 此示例演示具有两个属…