MongoDB 介绍

一、MongoDB 介绍

MongoDB 是一个开源的、面向文档的数据库管理系统。它采用了灵活的数据模型,以类似 JSON 的文档形式存储数据,具有高可扩展性、高性能和丰富的功能。

主要特点包括:

  1. 灵活的数据模型:文档型数据库允许存储不同结构的文档,无需预先定义固定的模式。可以随时添加新的字段或修改现有字段,非常适合快速变化的应用场景。
  2. 高可扩展性:支持水平扩展,可以通过分片机制将数据分布在多个服务器上,以处理大规模数据和高并发访问。
  3. 丰富的查询语言:提供类似 SQL 的查询语言,支持复杂的查询操作,包括条件查询、排序、聚合等。同时,还支持索引以提高查询性能。
  4. 高可用性:支持副本集,可以实现数据冗余和故障转移,确保在节点故障时数据的持续可用。
  5. 支持多种编程语言:提供了丰富的驱动程序,支持多种编程语言,方便开发人员进行应用开发。

二、MongoDB 原理

  1. 存储结构:

    • MongoDB 将数据存储在文档中,文档是一种类似于 JSON 的结构,由键值对组成。文档可以包含不同类型的数据,如字符串、数字、日期、数组、嵌套文档等。
    • 数据库由多个集合组成,集合类似于关系型数据库中的表,但没有固定的模式。集合中的文档可以具有不同的结构。
    • MongoDB 使用内存映射文件进行数据存储,将数据文件映射到内存中,提高数据的读写性能。
  2. 索引机制:

    • MongoDB 支持多种类型的索引,包括单键索引、复合索引、文本索引、地理空间索引等。索引可以提高查询性能,特别是对于经常进行的查询操作。
    • MongoDB 会自动为文档的唯一标识符(_id)创建索引,也可以根据应用需求手动创建其他索引。
  3. 复制集:

    • 复制集是一组 MongoDB 服务器,其中一个服务器被指定为主服务器,其他服务器为从服务器。主服务器负责处理所有的写操作,并将数据同步到从服务器。
    • 从服务器可以提供读操作的负载均衡,提高系统的可用性和性能。如果主服务器发生故障,复制集会自动选举一个新的主服务器。
  4. 分片:

    • 分片是将数据分布在多个 MongoDB 服务器上的机制,以实现水平扩展。数据被分成多个数据块,每个数据块存储在不同的分片服务器上。
    • MongoDB 使用分片键来确定数据的分布,分片键可以是文档中的一个或多个字段。查询时,MongoDB 会根据分片键将查询路由到相应的分片服务器上。

三、以物联网存储实时数据为例讲解 MongoDB 的使用

  1. 设计数据模型:

    • 对于物联网实时数据,可以创建一个名为“sensor_data”的集合来存储传感器数据。每个文档可以包含传感器的标识、时间戳、测量值等字段。
    • 例如:
    {"sensor_id": "sensor1","timestamp": ISODate("2024-10-12T10:00:00Z"),"temperature": 25.5,"humidity": 60
    }
    
  2. 插入数据:

    • 使用 MongoDB 的驱动程序或命令行工具,可以将实时数据插入到数据库中。例如,使用 Python 的 pymongo 库:
    from pymongo import MongoClientclient = MongoClient('mongodb://localhost:27017/')
    db = client['iot_data']
    collection = db['sensor_data']data = {"sensor_id": "sensor1","timestamp": datetime.utcnow(),"temperature": 26.5,"humidity": 65
    }collection.insert_one(data)
    
  3. 查询数据:

    • 可以使用 MongoDB 的查询语言来查询特定传感器的数据或满足特定条件的数据。例如,查询传感器“sensor1”的所有数据:
    result = collection.find({"sensor_id": "sensor1"})
    for doc in result:print(doc)
    
  4. 建立索引:

    • 为了提高查询性能,可以根据经常查询的字段建立索引。例如,为“sensor_id”和“timestamp”字段建立复合索引:
    collection.create_index([("sensor_id", 1), ("timestamp", 1)])
    
  5. 数据聚合和分析:

    • MongoDB 提供了强大的聚合框架,可以对数据进行统计、分组、排序等操作。例如,计算某个时间段内传感器的平均温度:
    pipeline = [{"$match": {"sensor_id": "sensor1","timestamp": {"$gte": datetime(2024, 10, 12, 10, 0, 0),"$lt": datetime(2024, 10, 12, 11, 0, 0)}}},{"$group": {"_id": None,"average_temperature": {"$avg": "$temperature"}}}
    ]result = collection.aggregate(pipeline)
    print(result.next())
    

通过以上步骤,可以使用 MongoDB 有效地存储和处理物联网实时数据。根据实际需求,可以进一步优化数据模型、索引和查询,以提高系统的性能和可用性。

二、以下是使用 Java 代码以物联网存储实时数据为例展示 MongoDB 的使用方法:

1、添加依赖

如果使用 Maven 项目,在pom.xml文件中添加以下依赖:

<dependency><groupId>org.mongodb</groupId><artifactId>mongo-java-driver</artifactId><version>3.12.11</version>
</dependency>

2、代码示例

import com.mongodb.MongoClient;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoDatabase;
import org.bson.Document;import java.util.Date;public class MongoDBIoTExample {public static void main(String[] args) {// 创建 MongoDB 连接MongoClient mongoClient = new MongoClient("localhost", 27017);// 选择数据库MongoDatabase database = mongoClient.getDatabase("iot_data");// 选择集合MongoCollection<Document> collection = database.getCollection("sensor_data");// 模拟物联网传感器数据Document sensorData = new Document().append("sensor_id", "sensor1").append("timestamp", new Date()).append("temperature", 25.5).append("humidity", 60);// 插入数据到集合中collection.insertOne(sensorData);System.out.println("数据插入成功!");// 查询特定传感器的数据Document query = new Document("sensor_id", "sensor1");collection.find(query).forEach(document -> System.out.println(document.toJson()));// 关闭连接mongoClient.close();}
}

在这个示例中,首先创建了一个到本地 MongoDB 服务器的连接。然后选择了名为iot_data的数据库和名为sensor_data的集合。接着模拟了一个物联网传感器的数据,并将其插入到集合中。最后,通过查询特定传感器的 ID 来检索数据并打印输出。

三、聚合管道的概念
在 MongoDB 中,聚合管道是一种强大的工具,用于对数据进行复杂的分析和转换。以下是使用 MongoDB 的聚合管道进行数据分析的步骤:

聚合管道是由多个阶段组成的流水线,每个阶段对输入数据进行特定的操作,并将结果传递给下一个阶段。聚合管道可以处理大量的数据,并提供了丰富的操作,如过滤、分组、排序、计算聚合值等。

1、基本的聚合管道操作

  1. $match阶段:用于过滤文档,只选择符合特定条件的文档进入管道的下一个阶段。

    • 例如,选择温度大于 25 的传感器数据:
    { $match: { temperature: { $gt: 25 } } }
    
  2. $group阶段:用于将文档分组,并对每组文档进行聚合操作。

    • 例如,按传感器 ID 分组并计算平均温度:
    {$group: {_id: "$sensor_id",averageTemperature: { $avg: "$temperature" }}
    }
    
  3. $sort阶段:用于对文档进行排序。

    • 例如,按时间戳升序排序:
    { $sort: { timestamp: 1 } }
    
  4. $project阶段:用于选择和重命名字段,以及进行计算和转换。

    • 例如,选择特定字段并计算温度差:
    {$project: {sensor_id: 1,temperatureDifference: { $subtract: [ "$temperature", 25 ] }}
    }
    

使用 Java 驱动程序执行聚合管道

以下是使用 Java 驱动程序执行聚合管道的示例代码:

import com.mongodb.MongoClient;
import com.mongodb.client.AggregateIterable;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoDatabase;
import org.bson.Document;import java.util.Arrays;public class MongoDBAggregationExample {public static void main(String[] args) {// 创建 MongoDB 连接MongoClient mongoClient = new MongoClient("localhost", 27017);// 选择数据库MongoDatabase database = mongoClient.getDatabase("iot_data");// 选择集合MongoCollection<Document> collection = database.getCollection("sensor_data");// 定义聚合管道AggregateIterable<Document> result = collection.aggregate(Arrays.asList(new Document("$match", new Document("temperature", new Document("$gt", 25))),new Document("$group", new Document("_id", "$sensor_id").append("averageTemperature", new Document("$avg", "$temperature"))),new Document("$sort", new Document("averageTemperature", -1))));// 遍历结果for (Document document : result) {System.out.println(document.toJson());}// 关闭连接mongoClient.close();}
}

在这个示例中,首先创建了一个到本地 MongoDB 服务器的连接,并选择了名为iot_data的数据库和sensor_data集合。然后定义了一个聚合管道,包括过滤温度大于 25 的文档、按传感器 ID 分组并计算平均温度、按平均温度降序排序。最后,遍历结果并打印输出。

复杂的聚合操作

聚合管道还可以进行更复杂的操作,如嵌套分组、使用表达式进行计算、连接多个集合等。例如,可以使用$lookup阶段进行左外连接操作,将两个集合的数据关联起来进行分析。

以下是一个使用$lookup进行关联的示例:

{$lookup: {from: "sensor_metadata",localField: "sensor_id",foreignField: "sensor_id",as: "sensor_metadata"}
},
{$unwind: "$sensor_metadata"
},
{$project: {sensor_id: 1,temperature: 1,location: "$sensor_metadata.location"}
}

在这个示例中,假设存在另一个名为sensor_metadata的集合,包含传感器的元数据信息(如位置)。通过$lookup阶段将sensor_data集合与sensor_metadata集合进行关联,然后使用$unwind阶段将关联后的结果展开,最后使用$project阶段选择需要的字段。

通过灵活运用 MongoDB 的聚合管道,可以对数据进行各种复杂的分析和转换,满足不同的数据分析需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/56402.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++面试速通宝典——29

543. 简述#ifdef、#else、#endif和#ifndef的作用 利用#ifdef、#endif将程序功能模块包括进去&#xff0c;以向特定用户提供该功能。 在不需要时用户可轻易将其屏蔽。 #ifdef MATH #include "math.c" #endif 在子程序前加上标记&#xff0c;以便于追踪和调试。 …

react hooks中在setState后输出state为啥没有变化,如何解决

在 React Hooks 中&#xff0c;setState 的概念被 useState 或 useReducer 钩子所替代。与类组件中的 setState 一样&#xff0c;这些钩子也是异步更新状态的。因此&#xff0c;如果你尝试在调用 setState&#xff08;即 setXXX 函数&#xff09;后立即读取状态值&#xff0c;你…

微知-BlueField DPU在lspci中显示Flash Recovery是什么意思?

效果&#xff1a; lspci |grep BlueField10:00.0 Memory controller: Mellanox Technologies MT42822 Family [BlueField-2 SoC Flash Recovery] (rev 01)*原因&#xff1a; 表示此时flash是empty空的&#xff0c;或者在flash中的FW是无法工作的。比如烧录错误。 这里指的一提…

How to list the environment variables in MySQL based on podman

有时候&#xff0c;我们期望系统的、完整的输出mysql中的环境变量&#xff0c;但是只是想看看&#xff0c;不想安装mysql&#xff0c;有没有什么好的办法呢&#xff1f; 其实&#xff0c;答案是有的。我们可以基于docker/podman来完成&#xff0c;这里推荐podman&#xff0c;示…

从不一样的角度体会MATLAB

MATLAB&#xff08;矩阵实验室&#xff09;是一个广泛使用的高性能语言&#xff0c;特别适合用于科学计算、数据分析和图形可视化。它的强大功能和灵活性使得它在工程、金融、科研及教育等领域得到了广泛应用。以下是对MATLAB的一些不同角度的介绍&#xff1a; 1. 编程环境 M…

大数据测试:Charles修改响应数据

上一篇大数据测试&#xff1a;Fiddler修改响应数据-CSDN博客 &#xff0c;有同学反馈有没有Charles的方式修改响应数据&#xff0c;本篇就是Charles修改数据操作步骤&#xff0c;相比较fiddler&#xff0c;Charles相对简单&#xff0c;便捷&#xff0c;我很喜欢 1、背景&…

为什么SSH协议是安全的?

SSH的传输层协议&#xff08;Transport Layer Protocol&#xff09;和用户鉴权协议&#xff08;Authentication Protocol&#xff09;确保数据的传输安全&#xff0c;这里只介绍传输层协议&#xff0c;是SSH协议的基础。 本文针对SSH2协议。 1、客户端连接服务器 服务器默认…

serv00 恢复如初 清理 回到刚注册状态 重生

内容介绍 本期主要介绍如何将serv00恢复到刚刚注册时的初始状态, 不管你是搭建了节点还是建立了个人博客网站, 使用本期介绍的方法, 都可以将已经写入了内容或者混乱的serv00重置到刚刚注册时的状态. 更多内容&#xff1a;https://lzphy.top/ 1 清除PM2进程 列出进程清单 …

Web组态数据联动

1. 通过get/post获取设备列表信息 2. websocket连接mqtt服务器&#xff0c;接收json报文信息 3. 通过Alpine进行数据联动 4. 封装svg对象&#xff0c;更新属性值 index.html <!DOCTYPE html> <html lang"en"> <head> <meta charset&qu…

Wavelet Convolutions for Large Receptive Fields

大感受野的小波卷积 论文链接&#xff1a;https://arxiv.org/abs/2407.05848v2 项目链接&#xff1a;https://github.com/BGU-CS-VIL/WTConv Abstract 近年来&#xff0c;人们一直试图增加卷积神经网络&#xff08;CNN&#xff09;的核大小&#xff0c;以模拟Vision Transfo…

基于深度学习的车辆车型检测识别系统(YOLOV5)

界面图&#xff1a; 项目简介&#xff1a; 网络&#xff1a;深度学习网络 yoloV5 软件&#xff1a;PycharmAnaconda 环境&#xff1a;python3.8 opencv PyQt5 torch1.9 文件&#xff1a;训练集8000张图片 测试集1000张图片 系统包含所有文件夹 环境文件 UI文件 功能&a…

javascript中`Math.ceil` 和 `Math.floor`的区别

Math.ceil 和 Math.floor 都是 JavaScript 中的内置函数&#xff0c;用于对数字进行取整&#xff0c;但它们的行为有所不同&#xff1a; Math.ceil&#xff1a;向上取整。它返回大于或等于一个给定数字的最小整数。例如&#xff0c;Math.ceil(4.2) 返回 5&#xff0c;Math.ceil…

解决php连接本地mysql连接错误的问题

我的服务器启用的nginx&#xff0c;配置了php的连接mysql的配置文件connect.php&#xff1a; <?php$server"localhost";//主机$db_username"root";//你的数据库用户名$db_password"root";//你的数据库密码$dbname "users";$conn…

Zookeeper快速入门:部署服务、基本概念与操作

文章目录 一、部署服务1.下载与安装2.查看并修改配置文件3.启动 二、基本概念与操作1.节点类型特性总结使用场景示例查看节点查看节点数据 2.文件系统层次结构3.watcher 一、部署服务 1.下载与安装 下载&#xff1a; 一定要下载编译后的文件&#xff0c;后缀为bin.tar.gz w…

PE结构之导出表

导出表结构中各种值的意义 ​​​​​​ 根据函数地址表遍历函数名称RVA表,和上面的图是逆过程 //函数地址表 和当前内存中的位置DWORD AddressOfFunctionsFOA RVAToFOA(LPdosHeader, LPexprotDir->AddressOfFunctions);PDWORD LPFunctionsAddressInMemary (PDWORD)((cha…

ssm基于VUE的图书馆管理系统的设计与实现+vue

系统包含&#xff1a;源码论文 所用技术&#xff1a;SpringBootVueSSMMybatisMysql 免费提供给大家参考或者学习&#xff0c;获取源码请私聊我 需要定制请私聊 目 录 目 录 III 第1章 绪论 1 1.1 课题背景 1 1.2 课题意义 1 1.3 研究内容 2 第2章 开发环境与技术 3 …

Android终端GB28181音视频实时回传设计探讨

技术背景 好多开发者&#xff0c;在调研Android平台GB28181实时回传的时候&#xff0c;对这块整体的流程&#xff0c;没有个整体的了解&#xff0c;本文以大牛直播SDK的SmartGBD设计开发为例&#xff0c;聊下如何在Android终端实现GB28181音视频数据实时回传。 技术实现 Andr…

简单说说mysql的mvcc

mvcc的实现依赖什么 事务版本号 每次事务开始之前&#xff0c;都会从数据库获取一个【自增长】的事务id&#xff0c;从这个版本号&#xff0c;可以判断事务的先后顺序 隐式字段 对于innodb存储引擎&#xff0c;每行记录都有两个隐藏列&#xff0c;分别是&#xff1a;trx_id…

java-day11

1.ArrayList 集合和数组的优势对比&#xff1a; 长度可变添加数据的时候不需要考虑索引&#xff0c;默认将数据添加到末尾 1.1 ArrayList类概述 什么是集合 ​ 提供一种存储空间可变的存储模型&#xff0c;存储的数据容量可以发生改变 ArrayList集合的特点 ​ 长度可以变化…

Canal 和 MySQL 配置指南

1. 环境依赖 在开始配置之前&#xff0c;请确保已安装并配置以下环境&#xff1a; Docker&#xff1a;用于运行 MySQL 和 Canal 的容器化服务。 MySQL&#xff1a;确保安装的是支持 binlog 的版本。 Canal&#xff1a;阿里巴巴开源的数据库增量订阅和消费组件。 2. MySQL …