打卡Day57
- 1.prim算法精讲
- 2.kruskal算法精讲
1.prim算法精讲
题目链接:prim算法精讲
文档讲解: 代码随想录
最小生成树是所有节点的最小连通子图,以最小的成本将图中所有节点连接到一起。prim算法是从节点的角度,采用贪心的策略,每次寻找距离 最小生成树最近的节点 并加入到最小生成树中。核心就三步:第一步,选距离生成树最近节点;第二步,最近节点加入生成树;第三步,更新非生成树节点到生成树的距离(即更新minDist数组)。minDist数组用来记录每一个节点距离最小生成树的最近距离,也就是最小生成树的边的权值。
#接收输入
v,e = map(int,input().split())
#按照常规的邻接矩阵存储图信息,不可达初始化为10001
graph = [[10001] * (v+1) for _ in range(v+1)]
for _ in range(e):v1,v2,val = map(int,input().split())graph[v1][v2] = val graph[v2][v1] = val
#定义加入生成树的标记数组和未加入生成树的最近距离
visited = [False] * (v+1)
minDist = [10001] * (v+1)
#循环n-1次,建立n-1次边
#从节点视角来看:每次选中一个节点加入树,更新剩余节点到树的最短距离
#这一步蕴含了确定下一条选取的边,计入总路程ans的计算
for _ in range(1,v+1):min_val = 10002 cur = -1 for j in range(1,v+1):if not visited[j] and minDist[j] < min_val:cur = j min_val = minDist[j]visited[cur] = Truefor j in range(1,v+1):if not visited[j] and graph[cur][j] < minDist[j]:minDist[j] = graph[cur][j]
ans = 0
for i in range(2,v+1):ans += minDist[i]
print(ans)
#输出路径
v,e = map(int,input().split())
graph = [[10001] * (v+1) for _ in range(v+1)]
for _ in range(e):v1, v2, val = map(int, input().split())graph[v1][v2] = valgraph[v2][v1] = val
visited = [False] * (v+1)
minDist = [10001] * (v+1)
#记录路径
parent = [-1] * (v+1)
for _ in range(1,v+1):min_val = 10002cur = -1for j in range(1,v+1):if not visited[j] and minDist[j] < min_val:cur = jmin_val = minDist[j]visited[cur] = Truefor j in range(1,v+1):if not visited[j] and graph[cur][j] < minDist[j]:minDist[j] = graph[cur][j]parent[j] = cur
res = 0
for i in range(2,v+1):res += minDist[i]
print(res)for i in range(1,v+1):print(f"{i} -> {parent[i]}")
2.kruskal算法精讲
题目链接:kruskal算法精讲
文档讲解: 代码随想录
kruskal是维护边的集合,其思路为,边的权值排序,因为要优先选最小的边加入到生成树中;遍历排序后的边,如果边首尾的两个节点在同一个集合,说明如果连上这条边图会出现环,如果不在同一个集合里,加入最小生成树,并把两个节点加入同一集合。
#kruskal算法
#定义边
class Edge:def __init__(self,l,r,val):self.l = l self.r = r self.val = val
n = 10001
father = list(range(n))
def find(u):if father[u] == u:return u father[u] = find(father[u])return father[u]
def joinside(u,v):u = find(u)v = find(v)if u == v:return father[v] = u
def kruskal(edges):edges.sort(key = lambda edge: edge.val)res = 0global fatherfather = list(range(n))for edge in edges:x = find(edge.l) y = find(edge.r) if x != y:joinside(x,y)res += edge.valreturn res
if __name__ == "__main__":v,e = map(int,input().split())edges = []for _ in range(e):v1,v2,val = map(int,input().split())edges.append(Edge(v1,v2,val))res = kruskal(edges)print(res)