实战5:个性化数字艺术生成与销售

盈利思路
  1. 数字艺术销售:

    • 平台销售:将生成的数字艺术作品上传到像OpenSea、Foundation等NFT平台进行售卖。每一件独特的艺术品可以通过NFT技术保证其唯一性,吸引收藏家和投资者。

    • 定价策略:根据作品的复杂度、创意性以及市场需求来定价。简单的艺术作品价格较低,复杂且个性化的作品可以定价更高,甚至设置拍卖机制。

  2. 定制化艺术创作服务:

    • 个性化定制:为艺术家、设计师或普通用户提供定制服务,用户可以提出想要的艺术风格(如未来主义、复古风、自然风等)和主题(如梦幻、现代城市、抽象等),AI根据这些需求生成独一无二的艺术作品。此类服务按作品收费。

    • 合作项目:与艺术学校、设计师工作室、广告公司等建立合作,提供定制的艺术作品,解决他们的设计需求。

  3. 艺术品展览与授权合作:

    • 展览:通过线上展览、虚拟画廊等方式展示AI创作的数字艺术,吸引观众、收藏家和潜在买家。展览可以收费入场,或者设置VIP体验区域,为高端客户提供定制化体验。

    • 授权销售:允许其他公司或平台使用生成的艺术作品进行商业化,如用在产品包装、宣传海报、虚拟现实场景等,这种授权可以按使用场景、时长等收费。

目标:

通过神经网络(GAN 或 DeepDream)生成个性化的数字艺术作品,并介绍如何将其用于销售。

所需工具与库:

  • Python

  • TensorFlow 或 PyTorch

  • Keras (如果使用TensorFlow)

  • OpenCV(图像处理)

  • NumPy(科学计算)

  • Matplotlib(可视化)

步骤 1:设置开发环境

首先,确保安装所需的库:

pip install tensorflow keras numpy opencv-python matplotlib

步骤 2:加载与准备数据

为了训练AI模型,我们需要一个数据集。假设你想生成基于风景的艺术作品,首先需要准备相关的图像数据集。

import os
import cv2
import numpy as np
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input# 加载图像数据集(可以从公开数据集下载)
def load_images_from_folder(folder, image_size=(256, 256)):images = []for filename in os.listdir(folder):img = cv2.imread(os.path.join(folder, filename))if img is not None:img = cv2.resize(img, image_size)img = np.array(img)images.append(img)return np.array(images)# 数据预处理
def preprocess_images(images):return preprocess_input(images)folder_path = 'path_to_your_images_folder'
images = load_images_from_folder(folder_path)
images = preprocess_images(images)

步骤 3:选择GAN模型(生成对抗网络)

在这里,我们使用GAN来生成艺术风格的图像。GAN由生成器(Generator)和判别器(Discriminator)组成,生成器负责生成图像,判别器负责判断图像的真实性。

定义生成器(Generator)
from tensorflow.keras import layers, modelsdef build_generator():model = models.Sequential()model.add(layers.Dense(128, input_dim=100, activation='relu'))model.add(layers.Reshape((8, 8, 2)))model.add(layers.UpSampling2D())model.add(layers.Conv2D(128, (3, 3), padding='same', activation='relu'))model.add(layers.UpSampling2D())model.add(layers.Conv2D(64, (3, 3), padding='same', activation='relu'))model.add(layers.Conv2D(3, (3, 3), padding='same', activation='tanh'))return model
定义判别器(Discriminator)
def build_discriminator():model = models.Sequential()model.add(layers.Conv2D(64, (3, 3), padding='same', input_shape=(256, 256, 3)))model.add(layers.LeakyReLU(0.2))model.add(layers.MaxPooling2D())model.add(layers.Conv2D(128, (3, 3), padding='same'))model.add(layers.LeakyReLU(0.2))model.add(layers.Flatten())model.add(layers.Dense(1, activation='sigmoid'))return model

定义GAN模型

def build_gan(generator, discriminator):discriminator.trainable = Falsemodel = models.Sequential()model.add(generator)model.add(discriminator)return model

步骤 4:训练GAN模型

在训练过程中,生成器试图生成越来越逼真的图像,而判别器则不断提高对真假图像的识别能力。

from tensorflow.keras.optimizers import Adamdef compile_models(generator, discriminator):discriminator.compile(optimizer=Adam(0.0002, 0.5), loss='binary_crossentropy', metrics=['accuracy'])gan.compile(optimizer=Adam(0.0002, 0.5), loss='binary_crossentropy')def train_gan(generator, discriminator, gan, images, epochs=10000, batch_size=64):half_batch = batch_size // 2for epoch in range(epochs):# 训练判别器idx = np.random.randint(0, images.shape[0], half_batch)real_images = images[idx]fake_images = generator.predict(np.random.randn(half_batch, 100))d_loss_real = discriminator.train_on_batch(real_images, np.ones((half_batch, 1)))d_loss_fake = discriminator.train_on_batch(fake_images, np.zeros((half_batch, 1)))d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)# 训练生成器noise = np.random.randn(batch_size, 100)g_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))# 每1000次输出一次损失情况if epoch % 1000 == 0:print(f"{epoch} [D loss: {d_loss[0]}] [G loss: {g_loss}]")

步骤 5:生成艺术作品并保存

import matplotlib.pyplot as pltdef generate_art(generator, noise=None):if noise is None:noise = np.random.randn(1, 100)generated_image = generator.predict(noise)plt.imshow(generated_image[0])plt.axis('off')plt.show()# 生成并展示艺术作品
generate_art(generator)

步骤 6:上传到NFT平台(OpenSea等)

  1. 将生成的艺术作品保存为图像文件。

  2. 使用平台提供的API或者直接上传到OpenSea、Foundation等NFT平台进行销售。

    # 保存生成的艺术作品为图像
    def save_generated_image(generator, filename='generated_art.png'):noise = np.random.randn(1, 100)generated_image = generator.predict(noise)plt.imsave(filename, generated_image[0])# 上传到OpenSea时,你可以通过MetaMask钱包进行支付和交易
    save_generated_image(generator)
    

    通过以上步骤,你可以利用生成对抗网络(GAN)生成个性化的数字艺术作品,并将这些作品上传到数字艺术平台进行销售。你不仅能为个人客户提供定制化服务,还能将作品转化为NFT进行交易,打开收入来源。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/81914.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

游戏引擎学习第303天:尝试分开对Y轴和Z轴进行排序

成为我们自己的代码精灵α 所以现在应该可以正常使用了。不过,这两周我们没办法继续处理代码里的问题,而之前留在代码里的那个问题依然存在,没有人神奇地帮我们修复,这让人挺无奈的。其实我们都希望有个神奇的“代码仙子”&#…

InetAddress 类详解

InetAddress 类详解 一、核心作用 封装 IP 地址:同时支持 IPv4 和 IPv6 地址域名解析:将域名转换为 IP 地址(DNS 查询)地址验证:检查网络地址的有效性无构造方法:通过静态工厂方法获取实例 二、核心方法 …

spring cloud alibaba-Geteway详解

spring cloud alibaba-Gateway详解 Gateway介绍 在 Spring Cloud Alibaba 生态系统中,Gateway 是一个非常重要的组件,用于构建微服务架构中的网关服务。它基于 Spring Cloud Gateway 进行扩展和优化,提供了更强大的功能和更好的性能。 Gat…

iOS 直播技术及优化

iOS直播技术的实现和优化涉及多个技术环节,需结合协议选择、编解码方案、播放器技术及性能调优等多方面。 一、核心技术实现 协议选择与传输优化 HLS(HTTP Live Streaming):苹果官方推荐,基于HTTP分片传输&#xff0c…

目标检测135个前沿算法模型汇总(附源码)!

目标检测是计算机视觉核心方向之一,也是发论文的热门领域! 近来不仅YOLO算法迎来了新突破,迭代出YOLOv12!Mamba、大模型等新技术的发展,也给该领域注入了全新的力量,取得了诸多显著成果。比如性能飙升82.3…

期刊采编系统安装升级错误

我们以ojs系统为例: PHP Fatal error: Uncaught Error: Call to a member function getId() on null in /esci/data/html/classes/install/Upgrade.inc.php:1019 Stacktrace: #0 /esci/data/html/lib/pkp/classes/install/Installer.inc.php(415): Upgrade->con…

浅谈无服务器WebSocket的优势

实际上,一个实用的解决方案是将构建业务关键型实时平台的复杂性卸载到专门的云服务中。 完全托管的无服务器 WebSocket 解决方案为事件驱动的消息传递提供了基础结构;它使底层基础设施成为一种商品。客户端使用提供程序服务发送/接收低延迟消息,并专注于…

Python数据可视化高级实战之二——热力图绘制探究

目录 一、热力图的作用 二、热力图反映的信息类型 三、热力图的典型应用场景 1. 地球信息系统 (GIS) 2. 城市交通分析 3. 市场分析 4. 用户行为分析 5. 网络流量分析 6. 传染病传播分析 7. 社交媒体舆情分析 四、Python 绘制热力图的关键技术要点 1. 数据预处理 2. 颜色选择与渐…

配电网运行状态综合评估方法研究

1评估指标体系的构建 [1]冷华,童莹,李欣然,等.配电网运行状态综合评估方法研究[J].电力系统保护与控制,2017,45(01):53-59. 1.1评估范围 图1为配电系统组成示意图,其中A、B、C分别表示高、中、低压配电系统。高压配变(也称主变)将35kV或110kV的电压降到10kV&#…

Docker安装MinIO对象存储中间件

MinIO 是一个高性能、分布式的对象存储系统,兼容 Amazon S3 云存储服务协议,广泛应用于企业存储、大数据、机器学习和容器化应用等领域。以下是详细介绍: 核心特点 兼容 S3 API :全面兼容 Amazon S3 API,这意味着使用…

HTML回顾

html全称:HyperText Markup Language(超文本标记语言) 注重标签语义,而不是默认效果 规则 块级元素包括: marquee、div等 行内元素包括: span、input等 规则1:块级元素中能写:行内元素、块级元素(几乎什么都能写) 规则2:行级元素中能写:行内元素,但不能写:块…

JAVA Spring MVC+Mybatis Spring MVC的工作流程*,多表连查

目录 注解总结 将传送到客户端的数据转成json数据 **描述一下Spring MVC的工作流程** 1。属性赋值 BeanUtils.copyProperties(addUserDTO,user); 添加依赖: spring web、mybatis framework、mysql driver Controller和ResponseBody优化 直接改成RestControl…

H2数据库中一条insert语句到生成java对象到数据写入磁盘的完整步骤

H2 数据库将 SQL 语句转换为磁盘存储的全过程可以分为以下 8 个关键步骤,我们以 INSERT INTO users (id, name) VALUES (1, Alice) 为例详细说明: 1. SQL 解析与语法树生成 词法分析:拆分语句为 INSERT、INTO、users 等 Token语法分析&#…

重磅升级!Google Play商店改版上线

5 月 21 日消息,Android Headline 今天(5 月 21 日)发布博文,报道称在 2025 年 I/O 开发者大会上,谷歌宣布更新 Google Play 应用商店,在优化用户体验的同时,提升开发者收益。 本次更新中&…

Docker面试题(1)

什么是Docker 一个容器化平台 形式是容器 将你的应用程序及所有依赖项打包在一起 确保应用程序在任何环境中无缝运行 什么是Docker镜像 Docker镜像是Docker容器的源代码 用于创建容器 使用build命令创建镜像 什么是 Docker容器 包括应用程序及所有的依赖项 作为操作系统的独立进…

Ulisses Braga-Neto《模式识别和机器学习基础》

模式识别和机器学习基础 [专著] Fundamentals of pattern recognition and machine learning / (美)乌利塞斯布拉加-内托(Ulisses Braga-Neto)著 ; 潘巍[等]译 推荐这本书,作者有自己的见解,而且提供代码。问题是难度高,对于初学…

RabbitMQ的简介

三个概念 生产者:生产消息的服务消息代理:消息中间件,如RabbitMQ消费者:获取使用消息的服务 消息队列到达消费者的两种形式 队列(queue):点对点消息通信(point-to-point) 消息进入队…

自动切换剪贴板路径中反斜杠为正斜杠

有时候需要将我们常见的win全路径中反斜杠为正斜杠,每次用记事本,编辑替换非常麻烦,于是写了这个工具,能自动修改剪贴板中的数据,只需要运行一下即可。 实现效果,将类似于下面的路径: C:\User…

【时时三省】Python 语言----文件

目录 1,文件打开 2, 文件关闭 3, 文件写入 4, 文件读出 5, 文件定位 6, 文件重命名 7, 复制文件 山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 1,文件打开 file = open(file, mode, buffering, encoding, errors, newline, closefd, opener) 2, 文…

React 个人笔记 Hooks编程

作用 配合函数式编程,保证在不产生类的时候完成一个整体的组件 常用组件 useStateuseContextuseReduceruseEffectuseMemouseCallback 前三个值为自变量 后三者为因变量 前三者相当于其他编程函数的变量声明,而后三者相当于对变量进行了(if now ! pr…