神经元和神经网络定义

在深度学习中,神经元神经网络是构成神经网络模型的基本元素。让我们从基础开始,逐步解释它们的含义和作用。

1️⃣ 神经元是什么?

神经元是神经网络中的基本计算单元,灵感来自于生物神经系统中的神经元。每个人的脑中有数以亿计的神经元,这些神经元通过连接(突触)彼此传递信息。在深度学习中,神经元也执行类似的任务。

神经元的工作原理:
  • 输入(Input):神经元接收来自上一层神经元的输入信号。每个输入信号通常是一个数字(比如一个图像的像素值),并且每个输入信号会有一个与之相关的权重(weight)。

  • 加权求和(Weighted Sum):神经元会对输入信号进行加权和求和,计算出总的输入信号。每个输入值乘以相应的权重,然后将这些加权的输入加在一起:

    Z=∑i(wi⋅xi)+bZ = \sum_{i} (w_i \cdot x_i) + b

    其中,wiw_i 是每个输入信号的权重,xix_i 是输入信号的值,bb 是偏置项(bias)。

  • 激活函数(Activation Function):加权求和之后,神经元将会通过一个激活函数(比如 ReLU、Sigmoid、Tanh 等)来决定输出值。激活函数决定了神经元是否被激活,以及它的输出值是多少。激活函数的作用是引入非线性,帮助神经网络学习复杂的模式。

    例如,ReLU 激活函数的公式是:

    ReLU(Z)=max⁡(0,Z)\text{ReLU}(Z) = \max(0, Z)

    这意味着如果加权和 ZZ 小于 0,神经元的输出为 0;如果 ZZ 大于 0,输出为 ZZ。

  • 输出(Output):经过激活函数处理后的值即为神经元的输出,这个输出将被传递给下一层神经元。

神经元的作用:

神经元的目标是根据输入信号计算一个输出,这个输出会对下一层的神经元产生影响,帮助神经网络逐步学习输入和输出之间的映射关系。

2️⃣ 神经网络是什么?

神经网络是由多个神经元按照一定的层次结构组成的计算模型。神经网络的设计灵感来源于人脑神经元的连接方式,目的是模拟人类大脑处理信息的过程。

神经网络的组成:
  • 输入层(Input Layer):输入层接收原始数据(例如图像、文本、声音等),并将其传递给下一层神经元。输入层的神经元数量通常等于输入数据的特征数量。

  • 隐藏层(Hidden Layers):隐藏层位于输入层和输出层之间,通常包含多个神经元。神经网络中的“深度”通常指的是隐藏层的数量。每一层的神经元都会接收上一层的输出,通过加权求和、激活函数计算新的输出,并将其传递到下一层。隐藏层是神经网络的核心部分,负责从数据中提取特征。

  • 输出层(Output Layer):输出层的神经元将会输出最终的预测结果。输出层的神经元数目通常与问题的目标有关。例如,对于二分类问题,输出层通常只有一个神经元(表示正类和负类的概率);对于多分类问题,输出层会有多个神经元(每个类别一个神经元)。

神经网络的训练:

神经网络的训练目标是通过优化损失函数,使得模型的输出尽可能接近真实的目标值。训练过程一般包括以下步骤:

  1. 前向传播(Forward Propagation):输入数据经过各层神经元的处理,最终生成输出。

  2. 计算损失(Loss Calculation):输出结果与实际目标进行对比,计算出损失值(例如,均方误差、交叉熵等)。

  3. 反向传播(Backpropagation):通过反向传播算法,计算每个神经元的误差,并根据误差更新网络的权重和偏置。

  4. 优化(Optimization):使用优化算法(如梯度下降)来最小化损失函数,从而调整神经网络的权重,使得模型在训练数据上的表现更好。

神经网络的种类:
  • 全连接神经网络(Feedforward Neural Network, FNN):输入层、隐藏层和输出层按顺序连接,信息在各层之间单向流动。

  • 卷积神经网络(CNN):适用于图像处理,通过卷积层提取图像的特征。

  • 循环神经网络(RNN):适用于序列数据(如文本、时间序列),通过循环连接来处理时间依赖性。

  • 生成对抗网络(GAN):由两个神经网络(生成器和判别器)组成,适用于生成数据。

3️⃣ 神经网络的工作原理

神经网络的核心思想是通过训练,使得输入数据经过各层的处理,最终输出一个预测值。在训练过程中,网络会不断调整每个神经元之间的连接权重,以便在给定输入时产生更准确的输出。深度神经网络通过多层的非线性变换,可以学习到复杂的模式和特征。

4️⃣ 总结

  • 神经元是神经网络的基本计算单元,通过接收输入、加权求和、激活函数计算,最终输出一个结果。

  • 神经网络是由多个神经元组成的计算模型,通过多层网络结构,学习输入和输出之间的映射关系,广泛应用于图像识别、自然语言处理、推荐系统等领域。

  • 神经网络的训练通过前向传播和反向传播机制,不断调整网络的权重和偏置,从而提高模型的预测精度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/80385.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CDGP重点知识梳理

写在前面 全文11700字,共82个重点知识 目 录 考点分布 考试要求 第一章 数据管理-5%

Ubuntu 22.04 安装配置远程桌面环境指南

在云服务器或远程主机上安装图形化桌面环境,可以极大地提升管理效率和用户体验。本文将详细介绍如何在 Ubuntu 22.04 (Jammy Jellyfish) 系统上安装和配置 Xfce4 桌面环境,并通过 VNC 实现远程访问。 系统环境 操作系统:Ubuntu 22.04 LTS (Jammy Jellyfish)架构:AMD64安装…

node提示node:events:495 throw er解决方法

前言 之前开发的时候喜欢使用高版本,追求新的东西,然后回头运行一下之前的项目提示如下 项目技术栈:node egg 报错 node:events:495 throw er; // Unhandled error event ^ Error: ENOENT: no such file or directory, scandir F:\my\gi…

【软件设计师:软件工程】9.软件开发模型与方法

一、软件危机与软件工程 软件危机与软件工程是计算机科学发展中密切相关的两个概念。 1.软件危机(Software Crisis) 背景:20世纪60年代至80年代,随着计算机硬件性能提升,软件规模与复杂度剧增,传统开发方法难以应对,导致大量项目失败。 表现: 成本失控:开发周期长、…

范式之殇-关系代数与参照完整性在 Web 后台的落寞

最近参加了一个PostgreSQL相关的茶会,感慨良多。原本话题是PostgreSQL 在 SELECT 场景中凭借其成熟的查询优化器、丰富的功能特性和灵活的执行策略,展现出显著优势。在窗口函数(Window Functions)、JOIN 优化、公共表表达式&#…

WebRTC工作原理详细介绍、WebRTC信令交互过程和WebRTC流媒体传输协议介绍

简介 WebRTC(Web Real-Time Communication)是一项允许在网页浏览器之间进行音视频通信的技术,基本不需要安装额外的插件。它的核心特点是支持低延迟的点对点(P2P)通讯,常用于视频聊天、实时文件共享、多人…

【大语言模型ChatGPT4/4o 】“AI大模型+”多技术融合:赋能自然科学暨ChatGPT在地学、GIS、气象、农业、生态与环境领域中的应用

以ChatGPT、LLaMA、Gemini、DALLE、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助…

提升编程效率的利器:Zed高性能多人协作代码编辑器

在当今这个快节奏的开发环境中,一个高效、灵活的代码编辑器无疑对开发者们起着至关重要的支持作用。Zed,作为来自知名编辑器Atom和语法解析器Tree-sitter的创造者的心血之作,正是这样一款高性能支持多人合作的编辑神器。本文将带领大家深入探…

基于51单片机步进电机控制—9个等级

基于51单片机步进电机控制 (仿真+程序+设计报告) 功能介绍 具体功能: 1.使用L298驱动步进电机转动,可分为9个速度等级(1级最快,9级最慢); 2.使用74HC595驱…

【某OTA网站】phantom-token 1004

新版1004 phantom-token 请求头中包含phantom-token 定位到 window.signature 熟悉的vmp 和xhs一样 最新环境检测点 最新检测 canvas 下的 toDataURL方法较严 过程中 会用setAttribute给canvas 设置width height 从而使toDataURL返回不同的值 如果写死toDataURL的返回值…

LSTM的简单模型

好的,我来用通俗易懂的语言解释一下这个 LSTMTagger 类是如何工作的。 1️⃣ 类的目的 这个 LSTMTagger 类是一个用于自然语言处理(NLP)任务的模型,目的是标注输入的句子,通常用于词性标注(例如&#xff…

每天批次导入 100 万对账数据到 MySQL 时出现死锁

一、死锁原因及优化策略 1.1 死锁原因分析 批量插入事务过大: Spring Batch 默认将整个 chunk(批量数据块)作为一个事务提交,100 万数据可能导致事务过长,增加锁竞争。 并发写入冲突: 多个线程或批处理作…

DeepResearch深度搜索实现方法调研

DeepResearch深度搜索实现方法调研 Deep Research 有三个核心能力 能力一:自主规划解决问题的搜索路径(生成子问题,queries,检索)能力二:在探索路径时动态调整搜索方向(刘亦菲最好的一部电影是…

跟我学C++中级篇——STL容器的查找对比

一、C标准库的查找 在C的STL中,对容器或相关序列的查找中,有两种方式,一种是std::find,另外一种是std::search。而且在它们的基础上,还衍生出std::find_if、std::find_if_not、std::find_end等和std::search_n、range…

SpringAI框架中的RAG知识库检索与增强生成模型详解

SpringAI框架中的RAG知识库检索与增强生成模型详解 一、RAG简介 RAG(Retrieval-Augmented Generation)可以通过检索知识库,克服大模型训练完成后参数冻结的局限性,携带知识让大模型根据知识进行回答。 二、SpringAI框架支持的R…

Delphi12安装Android开发的配置

Delphi12如果要开发android和Linux系统,需要在安装的时候安装这两个选项,否则,就找不到开发平台。 1、Adroid开发三剑客必须是指: JDK,SDK,NDK三洋,其中JDK是必须要安装的,最好使用Installer安装,否则自解压的免安装版在安装过程中会退出。 2、开始安装Delphi12. …

OpenHarmony launcher开发——删除dock栏

开发环境 OpenHarmony 5.0.0 代码修改 效果

FreeRTOS如何实现100%的硬实时性?

实时系统在嵌入式应用中至关重要,其核心在于确保任务在指定时间内完成。根据截止时间满足的严格程度,实时系统分为硬实时和软实时。硬实时系统要求任务100%满足截止时间,否则可能导致灾难性后果,例如汽车安全系统或医疗设备。软实…

微软推动智能体协同运作:支持 A2A、MCP 协议

今日凌晨,微软宣布 Azure AI Foundry 和 Microsoft Copilot Studio 两大开发平台支持最新 Agent 开发协议 A2A,并与谷歌合作开发扩大该协议,这一举措对智能体赛道意义重大。 现状与变革意义 当前智能体领域类似战国时代,各家技术…

从“山谷论坛”看AI七剑下天山

始于2023年的美国山谷论坛(Hill and Valley Forum)峰会,以“国会山与硅谷”命名,寓意连接科技界与国家安全战略。以人工智能为代表的高科技,在逆全球化时代已成为大国的致胜高点。 论坛创办者Jacob Helberg,现在是华府的副国务卿,具体负责经济、环境和能源事务。早先曾任…