R8周:RNN实现阿尔茨海默病诊断

  •      🍨 本文为🔗365天深度学习训练营中的学习记录博客
  •      🍖 原作者:K同学啊

一、前期准备

1.设置GPU
import numpy as np
import pandas as pd
import torch 
from torch import nn
import torch.nn as nn
import torch.nn.functional as F
import seaborn as sns#设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')
2.数据导入
df = pd.read_csv("F:/jupyter lab/DL-100-days/datasets/alzheimers_dig/alzheimers_disease_data.csv")
# 删除最后一列和第一列
df = df.iloc[:, 1:-1]
df

​​

二、数据分析

1.标准化
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScalerX = df.iloc[:, :-1]
y = df.iloc[:, -1]# 将每一列特征标准化为标准正态分布,注意,标准化是针对每一列而言的
scaler = StandardScaler()
X = scaler.fit_transform(X)
2. 划分数据集
X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=1)X_train.shape, y_train.shape
(torch.Size([1934, 32]), torch.Size([1934]))
3.构建数据加载器 
from torch.utils.data import TensorDataset, DataLoadertrain_dl = DataLoader(TensorDataset(X_train, y_train), batch_size=32, shuffle=False)
test_dl = DataLoader(TensorDataset(X_test, y_test), batch_size=32, shuffle=False)

三、训练模型

1.构建模型
class model_rnn(nn.Module):def __init__(self):super(model_rnn, self).__init__()self.rnn0 = nn.RNN(input_size=32, hidden_size=200, num_layers=1, batch_first=True)self.fc0 = nn.Linear(200, 50)self.fc1 = nn.Linear(50, 2)def forward(self, x):# 如果 x 是 2D 的,转换为 3D 张量,假设 seq_len=1if x.dim() == 2:x = x.unsqueeze(1)  # [batch_size, 1, input_size]# RNN 处理数据out, h_n = self.rnn0(x)  # 第一层 RNN# out 维度: [batch_size, seq_len, hidden_size]# 过 fc0 是线性层out = self.fc0(out)  # [batch_size, seq_len, 50]# 获取最后一个时间步的输出out = out[:, -1, :]  # 选择序列的最后一个时间步的输出 [batch_size, 50]out = self.fc1(out)  # [batch_size, 2]return outmodel = model_rnn().to(device)
model
model_rnn((rnn0): RNN(32, 200, batch_first=True)(fc0): Linear(in_features=200, out_features=50, bias=True)(fc1): Linear(in_features=50, out_features=2, bias=True)
)
2.定义训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss
3.定义测试函数
def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss
4.训练模型
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 5e-5
opt = torch.optim.Adam(model.parameters(), lr= learn_rate)epochs     = 50train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = opt.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,epoch_test_acc*100, epoch_test_loss, lr))print('Done')
Epoch: 1, Train_acc:63.4%, Train_loss:0.671, Test_acc:65.6%, Test_loss:0.659, Lr:5.00E-05
Epoch: 2, Train_acc:75.7%, Train_loss:0.632, Test_acc:74.4%, Test_loss:0.621, Lr:5.00E-05
Epoch: 3, Train_acc:78.4%, Train_loss:0.592, Test_acc:74.4%, Test_loss:0.580, Lr:5.00E-05
Epoch: 4, Train_acc:79.8%, Train_loss:0.550, Test_acc:74.9%, Test_loss:0.540, Lr:5.00E-05
Epoch: 5, Train_acc:81.4%, Train_loss:0.509, Test_acc:77.2%, Test_loss:0.502, Lr:5.00E-05
..........
Epoch:46, Train_acc:85.1%, Train_loss:0.368, Test_acc:81.4%, Test_loss:0.378, Lr:5.00E-05
Epoch:47, Train_acc:85.1%, Train_loss:0.368, Test_acc:81.4%, Test_loss:0.378, Lr:5.00E-05
Epoch:48, Train_acc:85.1%, Train_loss:0.368, Test_acc:81.4%, Test_loss:0.378, Lr:5.00E-05
Epoch:49, Train_acc:85.1%, Train_loss:0.368, Test_acc:81.4%, Test_loss:0.378, Lr:5.00E-05
Epoch:50, Train_acc:85.1%, Train_loss:0.368, Test_acc:81.4%, Test_loss:0.378, Lr:5.00E-05
==================== Done ====================

四、模型评估

1.Loss与Accuracy图
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率from datetime import datetime
current_time = datetime.now()epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time)plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

print("============输入数据shape为==============")
print("X_test.shape:",X_test.shape)
print("y_test.shape:",y_test.shape)pred = model(X_test.to(device)).argmax(1).cpu().numpy()print("\n==========输出数据Shape为=============")
print("pred.shape:",pred.shape)
============输入数据shape为==============
X_test.shape: torch.Size([215, 32])
y_test.shape: torch.Size([215])==========输出数据Shape为=============
pred.shape: (215,)
2.混淆矩阵
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay#计算混淆矩阵
cm = confusion_matrix(y_test,pred)plt.figure(figsize=(6,5))
plt.suptitle('')
sns.heatmap(cm,annot=True,fmt="d",cmap="Blues")#修改字体大小
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.title("confusion Matrix",fontsize=12)
plt.xlabel("Predicted Label",fontsize=10)
plt.ylabel("True Label",fontsize=10)#显示图
plt.tight_layout() #调整布局防止重叠
plt.show()

3.调用模型进行预测
test_X = X_test[0].reshape(1,-1) # X_test[0]即我们的输入数据pred = model(test_X.to(device)).argmax(1).item()
print("模型预测结果为:",pred)
print("=="*20)
print("0:未患病")
print("1:已患病")
模型预测结果为: 0
========================================
0:未患病
1:已患病

五、学习心得

1.本周使用RNN开展了阿尔兹海默症预测,使用阿尔兹海默症诊断状态0/1表示,同时加入混淆矩阵。

2.RNN与LSTM相比较,RNN的参数较少,计算量小;而LSTM的参数相对较多,时间长,但是记忆力保持的比较好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/79964.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

今天python练习题

目录 一、每日一言 二、练习题 三、效果展示 四、下次题目 五、总结 一、每日一言 不要害怕失败,失败可能成为我们前进的动力! 二、练习题 有列表lst [[1,2,3],[4,5,6],[7,8,9]],取出其中的元素1/5/9组成新的列表 # 有列表lst [[1,2,3],[4,5,6],[…

机器人强化学习入门学习笔记(二)

基于上一篇的《机器人强化学习入门学习笔记》,在基于 MuJoCo 的仿真强化学习训练中,除了 PPO(Proximal Policy Optimization)之外,还有多个主流强化学习算法可用于训练机器人直行或其他复杂动作。 🧠 一、常见强化学习算法对比(可用于 MuJoCo) 算法类型特点适合场景PP…

用 DuckDB 高效分析 JSON 数据:从入门到实战

解析 JSON 文件进行分析常常充满挑战。无论你是在处理 API 响应、日志文件,还是应用数据,如果没有合适的工具,分析 JSON 都会非常耗时。 借助 DuckDB,你可以直接用 SQL 查询复杂的 JSON 文件,无需编写复杂的解析代码或…

从贴牌到品牌:出海官网如何让中国制造“贵”起来?

在全球经济一体化的当下,中美关税战如同一记重锤,给国际贸易格局带来了巨大震荡。自贸易摩擦爆发以来,双方多次调整关税政策,涉及的商品种类不断增多,税率持续攀升,众多中国企业的出口业务遭受重创&#xf…

react-13react中外部css引入以及style内联样式(动态className与动态style)

1. 外部css文件 - 普通引入 1.1 创建一个 CSS 文件,MyComponent.css。 /* MyComponent.css */ .my-class {color: red;font-size: 20px; } 1.2 组件中import引入 import React from react; import ./MyComponent.css; // 引入 CSS 文件function MyComponent() {r…

n8n 与智能体构建:开发自动化 AI 作业的基础平台

n8n 是一款开源的自动化流程构建平台,通过其模块化节点系统,开发者可以快速实现跨平台的任务编排、数据集成与智能交互。当 n8n 与大型语言模型(LLM)结合时,就能构建出具备感知、推理、执行能力的 AI 智能体&#xff0…

14.Spring Boot 3.1.5 集成 Spring Security 进行访问控制

14.Spring Boot 3.1.5 集成 Spring Security 进行访问控制 Spring Security 是一个强大且高度可定制的认证和访问控制框架,专为基于 Spring 的应用程序设计。它为基于 Java EE 的企业应用程序提供了全面的安全解决方案,包括 Web 应用程序安全和方法级安…

Linux学习笔记(二):Linux权限管理

文章目录 一、Linux下用户的分类1. Linux下用户分为两类:2. 这两类用户如何进行切换呢?3. 短暂提权 二、何为权限1. 什么是权限2. Linux的文件后缀意义 三、修改权限1. 设置文件的访问权限——chmod2. 修改文件拥有者——chown3. 修改文件所属组——chgr…

学习alpha,第2个alpha

alphas (-1 * ts_corr(rank(ts_delta(log(volume), 2)), rank(((close - open) / open)), 6)) 先分析操作符从左到右 ts_corr: Pearson 相关度量两个变量之间的线性关系。当变量呈正态分布且关系呈线性时,它最有效。 ts_corr(vwap, close, 20)是一个计算时间序列相…

Paddle Serving|部署一个自己的OCR识别服务器

前言 之前使用C部署了自己的OCR识别服务器,Socket网络传输部分是自己写的,回过头来一看,自己犯傻了,PaddleOCR本来就有自己的OCR服务器项目,叫PaddleServing,这里记录一下部署过程。 1 下载依赖环境 1.1 …

React Native【详解】搭建开发环境,创建项目,启动项目

下载安装 node https://nodejs.cn/download/ 查看 npx 版本 npx -v若无 npx 则安装 npm install -g npx创建项目 npx create-expo-applatestRN_demo 为自定义的项目名称 下载安装 Python 2.7 下载安装 JAVA JDK https://www.oracle.com/java/technologies/downloads/#jdk24-…

NVIDIA Halos:智能汽车革命中的全栈式安全系统

高级辅助驾驶行业正面临一个尴尬的"安全悖论"——传感器数量翻倍的同时,事故率曲线却迟迟不见明显下降。究其原因,当前行业普遍存在三大技术困局: 碎片化安全方案 传统方案就像"打补丁",激光雷达厂商只管点云…

数据资产管理与AI融合:物联网时代的新征程

一、引言 在当今数字化浪潮席卷全球的时代,数据资产已成为企业和组织的核心竞争力之一。随着物联网(IoT)技术的飞速发展,海量的数据如潮水般涌来,如何高效地管理和利用这些数据资产成为了亟待解决的问题。与此同时&am…

MySQL 表的内外连接

文章目录 表的内外连接(重点)内连接外连接左外连接右外连接 表的内外连接(重点) 内连接 内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我们前面学习的查询都是内连接,也是在开发过程中使…

VTK 交互类介绍

基本概念 交互器(Interactor): 处理用户输入事件的基础类 交互样式(InteractorStyle): 定义具体的交互行为 Widgets: 可交互的UI组件,如滑块、按钮等 Picker: 用于选择场景中的对象 常用交互类 类名功能描述vtkRenderWindowInteractor渲染窗口交互器vtkInteractorStyle交互样式…

C语言动态库与静态库编译测试示例详细介绍终结篇

C语言动态库与静态库编译链接时的详细对比与示例 下面我将提供更详细的示例,并通过对比表格清晰地展示静态库和动态库的特性差异以及它们之间的各种链接关系。 ## 1. 静态库与动态库特性对比 | 特性 | 静态库(.a/.lib) | 动态…

神经网络:节点、隐藏层与非线性学习

神经网络:节点、隐藏层与非线性学习 摘要: 神经网络是机器学习领域中一种强大的工具,能够通过复杂的结构学习数据中的非线性关系。本文从基础的线性模型出发,逐步深入探讨神经网络中节点和隐藏层的作用,以及它们如何…

POI创建Excel文件

文章目录 1、背景2、创建表格2.1 定义表头对象2.2 Excel生成器2.3 创建模板2.4 处理Excel表头2.5 处理Excel内容单元格样式2.6 处理单个表头 3、追加sheet4、静态工具5、单元测试6、完整代码示例 1、背景 需求中有需要用户自定义Excel表格表头,然后生成Excel文件&a…

【分布式系统中的“瑞士军刀”_ Zookeeper】三、Zookeeper 在实际项目中的应用场景与案例分析

在分布式系统日益复杂的当下,Zookeeper 凭借强大的协调能力成为众多项目的关键组件。本篇文章将结合实际项目场景,详细介绍 Zookeeper 在电商秒杀、微服务架构、分布式配置管理以及大数据处理集群等领域的应用,以及在不同的案例场景下的具体分…

【翻译、转载】MCP 提示 (Prompts)

原文地址:https://modelcontextprotocol.io/docs/concepts/prompts#python 提示 (Prompts) 创建可重用的提示模板和工作流 提示 (Prompts) 使服务器能够定义可重用的提示模板和工作流,客户端可以轻松地将其呈现给用户和 LLM。它们提供了一种强大的方式来…