进阶数据结构——树状数组

前言

看这篇文章前我建议你们先看这个视频还有这个视频,不然你们可能看不懂。
在这里插入图片描述

一、树状数组的核心思想与本质

核心思想:树状数组(Fenwick Tree)是一种用于高效处理前缀和查询和单点更新的数据结构。
本质:通过二进制索引和树形结构,将前缀和的计算复杂度从

O(n) 优化到 O(logn)。

二、树状数组的基本操作

  1. 初始化
    初始化一个大小为 n 的数组,所有元素初始值为 0。

  2. 单点更新
    更新某个位置的值,并维护树状数组的结构。

  3. 前缀和查询
    查询从第一个元素到某个位置的前缀和。

  4. 区间和查询
    查询某个区间的和。

三、树状数组的应用场景

动态前缀和查询:

实时查询数组的前缀和,支持单点更新。

示例:LeetCode 307. 区域和检索 - 数组可修改。

逆序对计数:

使用树状数组统计数组中逆序对的数量。

示例:LeetCode 493. 翻转对。

区间更新与单点查询:

通过差分数组和树状数组实现区间更新和单点查询。

示例:LeetCode 370. 区间加法。

二维树状数组:

处理二维数组的前缀和查询和单点更新。

示例:LeetCode 308. 二维区域和检索 - 可变。

四、树状数组的复杂度分析
时间复杂度
单点更新:
O(logn)。

前缀和查询:
O(logn)。

区间和查询:
O(logn)。

空间复杂度
存储树状数组:
O(n)。

五、树状数组的优化技巧

  1. 差分数组
    通过差分数组实现区间更新和单点查询。

  2. 离散化
    在数据范围较大时,使用离散化减少树状数组的大小。

  3. 多维扩展
    将树状数组扩展到二维或更高维度,处理多维数组的前缀和查询和单点更新。

六、常见误区与调试技巧

  1. 误区一:树状数组适用于所有区间查询问题
    澄清:树状数组适用于前缀和查询和单点更新,对于复杂的区间查询问题可能需要其他数据结构(如线段树)。

  2. 误区二:树状数组的初始化复杂度高
    澄清:树状数组的初始化复杂度为 O(nlogn),但可以通过线性初始化优化到 O(n)。

  3. 调试方法
    打印树状数组:在每次操作后输出树状数组的内容,检查是否正确。

可视化树结构:手动画出树状数组的结构,模拟操作过程。

七、代码模版

单点更新

例题 【模板】树状数组 1

#include<iostream>
#include<vector>
using namespace std;template<class T>
class FenwickTree {
private:vector<T>m_tree;int lowbit(int x);
public:FenwickTree(int n):m_tree(n+1,0){}void update(int idx,T val);T query(int idx);T query(int l, int r);
};template<class T>
int FenwickTree<T>::lowbit(int x) {return x & (-x);
}template<class T>
void FenwickTree<T>::update(int idx, T val) {int n = (int)m_tree.size();while (idx < n) {m_tree[idx] += val;idx += lowbit(idx);}
}template<class T>
T FenwickTree<T>::query(int idx) {T sum = 0;while (idx > 0) {sum += m_tree[idx];idx -= lowbit(idx);}return sum;
}template<class T>
T FenwickTree<T>::query(int l, int r) {return query(r) - query(l - 1);
}int main() {int n, m;cin >> n >> m;FenwickTree<int> ft(n);for (int i = 1; i <= n; i++) {int x;cin >> x;ft.update(i, x);}while (m--) {int z, x, y;cin >> z >> x >> y;if (z == 1) {ft.update(x, y);}else {int sum = ft.query(x, y);cout << sum << endl;}}return 0;
}

区间更新

例题 【模板】树状数组

#include<iostream>
#include<vector>
using namespace std;template<class T>
class FenwickTree {
private:vector<T>m_tree;int lowBit(int idx);void update(int idx, T val);T query(int idx);T query(int l, int r);
public:FenwickTree(int n):m_tree(n+2,0){}void updateInterval(int l, int r, T val);T queryIndex(int idx);
};template<class T>
int FenwickTree<T>::lowBit(int idx) {return idx & -idx;
}template<class T>
void FenwickTree<T>::update(int idx, T val) {int n = (int)m_tree.size();while (idx < n) {m_tree[idx] += val;idx += lowBit(idx);}
}template<class T>
T FenwickTree<T>::query(int idx) {T sum = 0;while (idx > 0) {sum += m_tree[idx];idx -= lowBit(idx);}return sum;
}template<class T>
T FenwickTree<T>::query(int l, int r) {return query(r) - query(l - 1);
}template<class T>
void FenwickTree<T>::updateInterval(int l, int r, T val) {update(l, val);update(r + 1, -val);
}template<class T>
T FenwickTree<T>::queryIndex(int idx) {return query(idx);
}int main() {int n, m;cin >> n >> m;FenwickTree<int>ft(n);for (int i = 1; i <= n; i++) {int a;cin >> a;ft.updateInterval(i, i, a);}while (m--) {int opt;cin >> opt;if (opt == 1) {int l, r, x;cin >> l >> r >> x;ft.updateInterval(l, r, x);}else {int k;cin >> k;cout << ft.queryIndex(k) << endl;}}return 0;
}

八、经典例题

排序

#include<iostream>
#include<vector>
using namespace std;template<class T>
class FenwickTree {
private:vector<T>m_tree;int lowBit(int idx);
public:FenwickTree(int n):m_tree(n+1,0){}void update(int idx, T val);T query(int idx);T query(int l, int r);
};template<class T>
int FenwickTree<T>::lowBit(int idx) {return idx & -idx;
}template<class T>
void FenwickTree<T>::update(int idx, T val){int n = m_tree.size();while (idx < n) {m_tree[idx] += val;idx += lowBit(idx);}
}template<class T>
T FenwickTree<T>::query(int idx) {T sum = 0;while (idx > 0) {sum += m_tree[idx];idx -= lowBit(idx);}return sum;
}template<class T>
T FenwickTree<T>::query(int l, int r) {return query(r) - query(l - 1);
}#define maxn 1000001
int a[maxn];int main() {int n, m;cin >> n;FenwickTree<long long>ft(maxn);for (int i = 0; i < n; i++) {cin >> a[i];}long long sum = 0;for (int i = n - 1; i >= 0; i--) {		//逆序遍历数组看看后面有多少个比当前这个值小的个数,乘于它本身累加起来ft.update(a[i], 1);sum += (long long)ft.query(a[i] - 1) * a[i];	//求1~a[i]-1元素个数}cout << sum << endl;return 0;
}

逆序对的数量

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;template<class T>
class Dicretizer {
private:vector<T>m_data;
public:void addData(T v);void process();int get(T v) const;int size() const;
};template<class T>
void Dicretizer<T>::addData(T v) {m_data.push_back(v);
}template<class T>
void Dicretizer<T>::process() {sort(m_data.begin(), m_data.end());int lastId = 0;for (int i = 1; i < m_data.size(); i++) {T x = m_data[i];if (x != m_data[lastId]) {m_data[++lastId] = x;}}while (lastId < m_data.size() - 1) {m_data.pop_back();}
}template<class T>
int Dicretizer<T>::get(T v) const {int l = -1, r = m_data.size();while (l + 1 < r) {int mid = (l + r) / 2;if (m_data[mid] >= v)r = mid;else l = mid;}if (r == m_data.size() || m_data[r] != v)return -1;return r;
}template<class T>
int Dicretizer<T>::size() const {return m_data.size();
}template<class T>
class FenwickTree {
private:vector<T>m_tree;int lowBit(int idx);
public:FenwickTree(int n):m_tree(n+1,0){}void update(int idx, T val);T query(int idx);T query(int l, int r);
};template<class T>
int FenwickTree<T>::lowBit(int idx) {return idx & -idx;
}template<class T>
void FenwickTree<T>::update(int idx, T val){int n = m_tree.size();while (idx < n) {m_tree[idx] += val;idx += lowBit(idx);}
}template<class T>
T FenwickTree<T>::query(int idx) {T sum = 0;while (idx > 0) {sum += m_tree[idx];idx -= lowBit(idx);}return sum;
}template<class T>
T FenwickTree<T>::query(int l, int r) {return query(r) - query(l - 1);
}#define maxn 1000001
int a[maxn];int main() {int n;cin >> n;Dicretizer<int>d;FenwickTree<int>ft(n);for (int i = 0; i < n; i++) {cin >> a[i];d.addData(a[i]);}d.process();	for (int i = 0; i < n; i++) {a[i] = d.get(a[i]) + 1;		//树状数组的序号是从1开始,利用离散化给原数组每个值标记它的序号,也就是排序好它们的大小}long long sum = 0;for (int i = n - 1; i >= 0; i--) {ft.update(a[i], 1);sum += ft.query(a[i] - 1);		//查询1~a[i]-1的元素和,他要找的是比它本身小的个数}cout << sum << endl;return 0;
}

三元组个数

这题就是遍历到的原数组的每一个元素用左边比它小的个数乘于右边比它大的个数,但是复杂度还是太高了,所以还得需要离散化数组,用树状数组记录比它小或大的个数

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;template<class T>
class Dicretizer {
private:vector<T>m_data;
public:void addData(T v);void process();int get(T v) const;int size() const;
};template<class T>
void Dicretizer<T>::addData(T v) {m_data.push_back(v);
}template<class T>
void Dicretizer<T>::process() {sort(m_data.begin(), m_data.end());int lastId = 0;for (int i = 1; i < m_data.size(); i++) {T x = m_data[i];if (x != m_data[lastId]) {m_data[++lastId] = x;}}while (lastId < m_data.size() - 1) {m_data.pop_back();}
}template<class T>
int Dicretizer<T>::get(T v) const {int l = -1, r = m_data.size();while (l + 1 < r) {int mid = (l + r) / 2;if (m_data[mid] >= v)r = mid;else l = mid;}if (r == m_data.size() || m_data[r] != v)return -1;return r;
}template<class T>
int Dicretizer<T>::size() const {return m_data.size();
}template<class T>
class FenwickTree {
private:vector<T>m_tree;int lowBit(int idx);
public:FenwickTree(int n):m_tree(n+1,0){}void update(int idx, T val);T query(int idx);T query(int l, int r);
};template<class T>
int FenwickTree<T>::lowBit(int idx) {return idx & -idx;
}template<class T>
void FenwickTree<T>::update(int idx, T val){int n = m_tree.size();while (idx < n) {m_tree[idx] += val;idx += lowBit(idx);}
}template<class T>
T FenwickTree<T>::query(int idx) {T sum = 0;while (idx > 0) {sum += m_tree[idx];idx -= lowBit(idx);}return sum;
}template<class T>
T FenwickTree<T>::query(int l, int r) {return query(r) - query(l - 1);
}#define mod 998244353
#define maxn 1000001
int a[maxn], lt[maxn];	//lt[i]表示小于a[i]的个数int main() {int n;cin >> n;Dicretizer<int>d;FenwickTree<int>ft(n);for (int i = 0; i < n; i++) {cin >> a[i];d.addData(a[i]);}d.process();	for (int i = 0; i < n; i++) {a[i] = d.get(a[i]) + 1;		//树状数组的序号是从1开始,利用离散化给原数组每个值标记它的序号,也就是排序好它们的大小}for (int i = 0; i < n; i++) {ft.update(a[i], 1);lt[i] = ft.query(a[i] - 1);}ft = FenwickTree<int>(n);long long sum = 0;for (int i = n - 1; i >= 0; i--) {ft.update(a[i], 1);int gt = ft.query(a[i] + 1, n);		//求出比a[i]大的个数sum += (long long)lt[i] * gt % mod;sum %= mod;		//sum这个值可能超出范围所以还要取模}cout << sum << endl;return 0;
}

九、总结与学习建议

  1. 核心总结
    树状数组是一种高效处理前缀和查询和单点更新的数据结构。

通过二进制索引和树形结构,将复杂度优化到 O(logn)。

  1. 学习建议
    分类刷题:按问题类型集中练习(如动态前缀和、逆序对计数、区间更新)。

理解算法原理:掌握树状数组的实现步骤和优化技巧。

手写模拟过程:在纸上画出树状数组的结构,模拟操作过程,加深直观理解。

通过以上分析,树状数组作为一种高效的数据结构,在算法竞赛和实际应用中具有广泛用途。掌握其核心思想和实现技巧,能够有效提升算法效率。
在这里插入图片描述
希望大家可以一键三连,后续我们一起学习,谢谢大家!!!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/71364.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LabVIEW无刷电机控制器检测系统

开发了一种基于LabVIEW的无刷电机控制器检测系统。由于无刷电机具有高效率、低能耗等优点&#xff0c;在电动领域有取代传统电机的趋势&#xff0c;而无刷电机的核心部件无刷电机控制器产量也在不断增长。然而&#xff0c;无刷电机控制器的出厂检测仍处于半自动化状态&#xff…

STM32 CAN过滤器配置和应用方法介绍

目录 概述 一、CAN过滤器核心概念 二、过滤器配置步骤&#xff08;以标准ID为例&#xff09; 三、不同模式的配置示例 四、高级配置技巧 五、调试与问题排查 六、关键计算公式 总结 概述 在STM32微控制器中&#xff0c;CAN过滤器可以配置为标识符屏蔽模式和标识符列表模…

个人系统架构技术分享

架构技术 技术版本说明CentOS7.9操作系统Amoeba负责MySQL读写分离NFS分布式存储ISCSI块存储keepalived日志收集MySQL5.7数据库存储MinIO8.4.5对象存储Kubernetes1.23.15应用容器管理平台Redis7.0分布式缓存Elasticsearch7.17.3搜索引擎nacos3.3.4服务注册 后端技术 技术版本…

python进阶篇-面向对象

1.对象的定义 1.1 什么是对象 面向过程&#xff1a;将程序流程化 对象&#xff1a;就是“容器“&#xff0c;是用来存储数据和功能的&#xff0c;是数据和功能的集合体。 面向对象和面向过程没有优劣之分&#xff0c;它们只是使用的场景不同罢了。 1.2 为什么要有对象 有…

网络安全“挂图作战“及其场景

文章目录 一、网络安全挂图作战来源与定义1、网络安全挂图作战的来源2、网络安全挂图作战的定义 二、挂图作战关键技术三、挂图作战与传统态势感知的差异四、挂图作战主要场景五、未来趋势结语 一、网络安全挂图作战来源与定义 1、网络安全挂图作战的来源 网络安全挂图作战的…

【嵌入式Linux应用开发基础】read函数与write函数

目录 一、read 函数 1.1. 函数原型 1.2. 参数说明 1.3. 返回值 1.4. 示例代码 二、write 函数 2.1. 函数原型 2.2. 参数说明 2.3. 返回值 2.4. 示例代码 三、关键注意事项 3.1 部分读写 3.2 错误处理 3.3 阻塞与非阻塞模式 3.4 数据持久化 3.5 线程安全 四、嵌…

嵌入式八股文(四)计算机网络篇

第一章 基础概念 1. 服务 指网络中各层为紧邻的上层提供的功能调用,是垂直的。包括面向连接服务、无连接服务、可靠服务、不可靠服务。 2. 协议 是计算机⽹络相互通信的对等层实体之间交换信息时必须遵守的规则或约定的集合。⽹络协议的三个基本要素:语法、…

LabVIEW 天然气水合物电声联合探测

天然气水合物被认为是潜在的清洁能源&#xff0c;其储量丰富&#xff0c;预计将在未来能源格局中扮演重要角色。由于其独特的物理化学特性&#xff0c;天然气水合物的探测面临诸多挑战&#xff0c;涉及温度、压力、电学信号、声学信号等多个参数。传统的人工操作方式不仅效率低…

JAVA代码走查重构常用prompt

代码重构prompt&#xff1a; ## 主题&#xff1a; 代码重构 ## 角色扮演: 你是软件开发大师Martin Fowler&#xff0c;精通代码重构、面向对象编程、Clean Code和设计模式&#xff0c;且熟练掌握《重构&#xff0c;改善既有代码的设计》这本书中的重构思想和各种重构方法。 ## …

[数据结构]红黑树,详细图解插入

目录 一、红黑树的概念 二、红黑树的性质 三、红黑树节点的定义 四、红黑树的插入&#xff08;步骤&#xff09; 1.为什么新插入的节点必须给红色&#xff1f; 2、插入红色节点后&#xff0c;判定红黑树性质是否被破坏 五、插入出现连续红节点情况分析图解&#xff08;看…

STM32 HAL库USART串口DMA IDLE中断编程:避坑指南

HAL_UART_Receive接收最容易丢数据了,STM32 HAL库UART查询方式实例 可以考虑用中断来实现,但是HAL_UART_Receive_IT还不能直接用,容易数据丢失,实际工作中不会这样用,STM32 HAL库USART串口中断编程&#xff1a;演示数据丢失, 需要在此基础优化一下. STM32F103 HAL库USART串口…

sql注入中information_schema被过滤的问题

目录 一、information_schema库的作用 二、获得表名 2.1 sys.schema_auto_increment_columns 2.2 schema_table_statistics 三、获得列名 join … using … order by盲注 子查询 在进行sql注入时&#xff0c;我们经常会使用information_schema来进行爆数据库名、表名、…

Jenkins 给任务分配 节点(Node)、设置工作空间目录

Jenkins 给任务分配 节点(Node)、设置工作空间目录 创建 Freestyle project 类型 任务 任务配置 Node 打开任务-> Configure-> General 勾选 Restrict where this project can be run Label Expression 填写一个 Node 的 Label&#xff0c;输入有效的 Label名字&#x…

Electron:使用electron-react-boilerplate创建一个react + electron的项目

使用 electron-react-boilerplate git clone --depth 1 --branch main https://github.com/electron-react-boilerplate/electron-react-boilerplate.git your-project-name cd your-project-name npm install npm start 安装不成功 在根目录加上 .npmrc文件 内容为 electron_…

数控机床设备分布式健康监测与智能维护系统MTAgent

数控机床设备分布式健康监测与智能维护系统MTAgent-v1.1融合了目前各种先进的信号处理以及信息分析算法以算法工具箱的方式&#xff0c;采用了一种开发的、模块化的结构实现信号各种分析处理&#xff0c;采用Python编程语言&#xff0c;满足不同平台需求(包括Windows、Linux)。…

FPGA VIVADO:axi-lite 从机和主机

FPGA VIVADO:axi-lite 从机和主机 TOC在这里插入代码片 前言 协议就不详细讲解了&#xff0c;直接看手册即可。下面主要如何写代码和关键的时序。 此外下面的代码可以直接用于实际工程 一、AXI-LITE 主机 数据转axi lite接口&#xff1a; 读/写数据FIFO缓存 仲裁&#xff1a…

1. 对比 LVS 负载均衡群集的 NAT 模式和 DR 模式,比较其各自的优势 。2. 基于 openEuler 构建 LVS-DR 群集。

DR 模式 * 负载各节点服务器通过本地网络连接&#xff0c;不需要建立专用的IP隧道 原理&#xff1a;首先负载均衡器接收到客户的请求数据包时&#xff0c;根据调度算法决定将请求发送给哪个后端的真实服务器&#xff08;RS&#xff09;。然后负载均衡器就把客户端发送的请求数…

ollama server启动服务后如何停止

要停止 Ollama 服务器服务&#xff0c;取决于如何启动该服务的。以下是几种常见的启动方法和相应的停止服务的步骤&#xff1a; 1. 直接在命令行中启动 如果是在命令行中直接启动 Ollama 服务器的&#xff0c;例如使用以下命令&#xff1a; ollama serve 可以通过以下方式停…

【设计模式】03-理解常见设计模式-行为型模式(专栏完结)

前言 前面我们介绍完创建型模式和创建型模式&#xff0c;这篇介绍最后的行为型模式&#xff0c;也是【设计模式】专栏的最后一篇。 一、概述 行为型模式主要用于处理对象之间的交互和职责分配&#xff0c;以实现更灵活的行为和更好的协作。 二、常见的行为型模式 1、观察者模…

mapbox基础,使用geojson加载line线图层,实现纯色填充、图片填充、虚线和渐变效果

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:mapbox 从入门到精通 文章目录 一、🍀前言1.1 ☘️mapboxgl.Map 地图对象1.2 ☘️mapboxgl.Map style属性1.3 ☘️line线图层样式二、🍀使用geojson加载…