【Matlab优化算法-第14期】基于智能优化算法的VMD信号去噪项目实践

基于智能优化算法的VMD信号去噪项目实践

一、前言

在信号处理领域,噪声去除是一个关键问题,尤其是在处理含有高斯白噪声的复杂信号时。变分模态分解(VMD)作为一种新兴的信号分解方法,因其能够自适应地分解信号而受到广泛关注。然而,VMD的性能在很大程度上依赖于其参数的选择。本文将介绍如何使用智能优化算法(如粒子群优化算法,PSO)来优化VMD的参数,从而提高信号去噪的效果。

二、项目背景

在许多实际应用中,信号往往被噪声污染,这会影响信号的后续处理和分析。例如,在通信、医疗电子和地震信号处理等领域,信号去噪是提高信号质量、增强信号特征和提高系统性能的关键步骤。传统的去噪方法,如小波变换和经验模态分解(EMD),虽然在一定程度上有效,但在处理复杂信号时可能会遇到一些问题,如模态混叠和边界效应。VMD作为一种改进的信号分解方法,通过将信号分解为多个模态分量(IMFs),能够更好地处理非平稳信号。然而,VMD的性能在很大程度上依赖于其参数的选择,如惩罚参数α和模态分量的数量K。因此,优化这些参数对于提高VMD的去噪效果至关重要。

三、项目目标

本项目的目标是通过智能优化算法(如粒子群优化算法,PSO,本文使用的是改进的IBKA算法)优化VMD的参数,以提高信号去噪的效果。具体目标包括:
使用智能优化算法搜索最优的VMD参数(α和K)。
通过动态时间规整(DTW)筛选与原始信号动态特性相似的模态分量,剔除噪声分量。
重构信号并评估去噪效果,使用信噪比(SNR)、均方误差(MSE)和频谱分析等指标。
与其他优化算法(如BKA、IBKA和北方苍鹰算法)进行比较,验证所提方法的优越性。

四、实验步骤

(一)信号生成

信号参数:生成一个包含三个正弦信号的合成信号,频率分别为5 Hz、50 Hz和125 Hz,并叠加信噪比为5 dB的高斯白噪声。
信号表达式:
X(t)=10sin(2πf1​t)+3sin(2πf2​t)+1.5sin(2πf3​t)+噪声
其中,f1​=5 Hz, f2​=50 Hz, f3​=125 Hz,信噪比为5 dB。

(二)VMD参数优化

优化算法选择:使用粒子群优化算法(PSO)搜索最优的VMD参数(α和K)。
适应度函数:选择合适的适应度函数以提高优化算法的性能,如搜索性能和收敛性。
优化过程:通过优化算法搜索最优参数,输出K个模态分量(IMFs)。

(三)DTW筛选

计算DTW距离:对每个模态分量和原始信号计算动态时间规整(DTW)距离。
设定阈值筛选:保留DTW距离较小的模态分量,剔除噪声分量。
阈值选择:使用动态阈值(如按IMF距离分布的均值和标准差设定)以减少人工设定带来的误差。

(四)信号重构

重构信号:将筛选后的模态分量进行叠加,得到重构信号。
结果评估:使用信噪比(SNR)、均方误差(MSE)和频谱分析等指标评估去噪效果。

(五)结果比较

与其他优化算法比较:使用相同的仿真信号和适应度函数,结合不同的优化算法(如BKA、IBKA和北方苍鹰算法)进行比较。
性能指标对比:对比降噪后信号的SNR、MSE和MAE,绘制对比图。

五、实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(一)信噪比提升

通过优化VMD参数并结合DTW筛选,重构信号的信噪比(SNR)明显提升,表明去噪效果显著。

(二)均方误差降低

重构信号的均方误差(MSE)明显降低,进一步验证了去噪方法的有效性。

(三)频谱特性

重构信号的频谱特性与原始信号高度一致,主要频率成分得以保留,表明去噪过程未对信号的主要特征造成显著影响。

(四)优化算法性能

通过绘制优化算法的收敛曲线,可以直观地展示不同适应度函数对优化算法性能的影响。实验结果表明,所选适应度函数能够有效提高优化算法的收敛速度和稳定性。

(五)与其他算法的比较

与其他优化算法(如BKA、IBKA和北方苍鹰算法)结合VMD进行比较,结果表明,使用PSO优化的VMD在降噪效果上具有明显优势,SNR更高,MSE更低。

六、结论

本项目通过智能优化算法(PSO)优化VMD的参数,并结合DTW筛选有效模态分量,成功实现了信号的高效去噪。实验结果表明,该方法能够显著提高信噪比,降低均方误差,并且保留了信号的主要频谱特性。此外,与其他优化算法的比较进一步验证了所提方法的优越性。未来,可以进一步探索其他智能优化算法在VMD参数优化中的应用,并将其应用于更多实际信号处理场景中。

七、代码实现

以下是使用MATLAB实现的代码片段:

%% 主函数clc
close all
clear all
dbstop if error
%% 添加路径
addpath(genpath(pwd))%% 读取数据%% 选取数据
filename='1.txt';
data0=importdata(filename);[t,data,X]=simData(5);% step=100;%% 降采样的间隔  每隔多少点取一个点
% data=data0.data(1:step:end,3)*0.12;
% t=data0.data(1:step:end,2)/500;
figure
hold on
plot(t,X,'g','LineWidth',2,'DisplayName','原始数据')
plot(t,data,'r','LineWidth',2,'DisplayName','原始数据+噪声')xlabel('时间(s)','FontSize',12,'FontWeight','bold','FontName','楷体')
ylabel('电压','FontSize',12,'FontWeight','bold','FontName','楷体')
grid on
box on
legend('FontName','楷体')
%% 根据IBKA-SVM得到的最优参数 进行分解
best_alpha=3500;
best_K=5;
[u, u_hat, omega] = vmd(data,'PenaltyFactor', best_alpha,'NumIMF',best_K);figure
Dt=zeros(best_K,1);
for i=1:best_Ksubplot(ceil(best_K/2),2,i)plot(t,u(:,i))ylabel(['imf' num2str(i)])grid onbox onif i==best_K-1xlabel('时间')end%% 计算DTW距离Dt(i)=dtwfunction(u(:,i),data,0);
end
sgtitle('VMD最优分解结果')
xlabel('时间')figure
plot(Dt,'k-*','DisplayName','DTW距离')
xlabel('imf序号')
ylabel('dtw距离')
hold on
thre=max(min(Dt),mean(Dt)-1*std(Dt));plot(thre*ones(size(Dt)),'r-','DisplayName','动态阈值')
legend
idx=find(Dt<=thre);
% max_idx=find(Dt==max(Dt));
% idx=1:best_K;
% 
% idx=setdiff(idx,max_idx);
% data_new=sum(u(:,2:end),2);
data_new=sum(u(:,idx),2);figure
hold on
plot(t,X,'g','LineWidth',2,'DisplayName','原始数据')
plot(t,data_new,'b','LineWidth',2,'DisplayName','去噪后数据')
xlabel('时间(s)','FontSize',12,'FontWeight','bold','FontName','楷体')
ylabel('电压','FontSize',12,'FontWeight','bold','FontName','楷体')
grid on
box on
legend('FontName','楷体')%% 计算指标
snr=10*log(sum(X.^2)/sum((X-data).^2));mse=mean((X-data).^2);mae=mean(abs(X-data));fprintf('原始信号:snr=%0.4f,mse=%0.4f,mae=%0.4f\n',snr,mse,mae)snr=10*log(sum(X.^2)/sum((X-data_new').^2));mse=mean((X-data_new').^2);mae=mean(abs(X-data_new'));fprintf('IBKA-VMD-DWT降噪后信号:snr=%0.4f,mse=%0.4f,mae=%0.4f\n',snr,mse,mae)

八、参考文献

《基于优化 VMD 与改进加权函数的管道泄漏定位方法研究》

希望以上内容能够满足你的需求。如果有任何进一步的修改意见或补充内容,欢迎随时告诉我。

本人擅长各类优化模型的建模和求解,具有近400个优化项目的建模仿真经验,擅长模型构建,算法设计,算法实现和算法改进。累计指导各类建模/算法比赛和SCI写作超过100人次。
本人长期提供: ①源码分享(近1000个本人手写项目) ②辅导答疑(远程桌面一对一语音+文档指导,可以录屏反复观看)
③项目定制(根据您的现实问题,针对性建模求解,提供完整方案+代码实现)

长期在线,欢迎咨询,一般晚上看消息!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70602.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python连点器

要实现一个用于抖音点赞的鼠标连点工具&#xff0c;可以通过编程或现有软件实现。以下是两种常见方法&#xff08;但请注意&#xff1a;频繁自动化操作可能违反平台规则&#xff0c;需谨慎使用&#xff09;&#xff1a; 方法 1&#xff1a;使用现成工具&#xff08;如 AutoClic…

8.JVM-方法区

前言 这次所讲述的是运行时数据区的最后一个部分 从线程共享与否的角度来看 ThreadLocal&#xff1a;如何保证多个线程在并发环境下的安全性&#xff1f;典型应用就是数据库连接管理&#xff0c;以及会话管理 栈、堆、方法区的交互关系 下面就涉及了对象的访问定位 Person&a…

C++:将函数参数定义为const T的意义

C++很多函数的参数都会定义为const T&,那么这么做的意义是什么呢? 避免拷贝:通过引用传递参数而不是值传递,可以避免对象的拷贝,从而提高性能,特别是当对象较大时。 保护数据:使用const关键字可以防止函数修改传入的参数,确保数据的安全性和一致性。 对于保护数据这…

大模型训练(7):集合通信与通信原语

0 背景 分布式训练过程中设计到许多通信上的操作&#xff0c; 每个操作有其不同的术语并且有所区别&#xff0c;这里将其用简单的例子和描述总结一下&#xff0c;方便理解。 集合通信&#xff08;Collective Communications&#xff09;是一个进程组的所有进程都参与的全局通…

全程Kali linux---CTFshow misc入门(38-50)

第三十八题&#xff1a; ctfshow{48b722b570c603ef58cc0b83bbf7680d} 第三十九题&#xff1a; 37换成1&#xff0c;36换成0&#xff0c;就得到长度为287的二进制字符串&#xff0c;因为不能被8整除所以&#xff0c;考虑每7位转换一个字符&#xff0c;得到flag。 ctfshow{5281…

计算机视觉的研究方向、发展历程、发展前景介绍

以下将分别从图像分类、目标检测、语义分割、图像分割&#xff08;此处应主要指实例分割&#xff09;四个方面&#xff0c;为你介绍研究生人工智能计算机视觉领域的应用方向、发展历程以及发展前景。 文章目录 1.图像分类应用方向发展历程发展前景 2.目标检测应用方向发展历程…

Android性能优化

Android性能优化 如何优化一个包含大量图片加载的Android应用&#xff0c;以提高性能和用户体验&#xff1f; 优化一个包含大量图片加载的Android应用&#xff0c;可以从以下几个方面入手&#xff0c;以提高性能和用户体验&#xff1a; 选择合适的图片加载库 使用成熟的图片…

C++Primer学习(2.2)

2.2 变量 变量提供一个具名的、可供程序操作的存储空间。C中的每个变量都有其数据类型,数据类型决定着变量所占内存空间的大小和布局方式、该空间能存储的值的范围&#xff0c;以及变量能参与的运算。对C程序员来说,“变量(variable)”和“对象(object)”一般可以互换使用。 术…

49-拓展(1)

49-拓展&#xff08;1&#xff09; 扩展概述 扩展可以为在当前 package 可见的类型&#xff08;除函数、元组、接口&#xff09;添加新功能。 当不能破坏被扩展类型的封装性&#xff0c;但希望添加额外的功能时&#xff0c;可以使用扩展。 可以添加的功能包括&#xff1a; …

Maven 安装配置(完整教程)

文章目录 一、Maven 简介二、下载 Maven三、配置 Maven3.1 配置环境变量3.2 Maven 配置3.3 IDEA 配置 四、结语 一、Maven 简介 Maven 是一个基于项目对象模型&#xff08;POM&#xff09;的项目管理和自动化构建工具。它主要服务于 Java 平台&#xff0c;但也支持其他编程语言…

基于Java的远程视频会议系统(源码+系统+论文)

第一章 概述 1.1 本课题的研究背景 随着人们对视频和音频信息的需求愈来愈强烈&#xff0c;追求远距离的视音频的同步交互成为新的时尚。近些年来&#xff0c;依托计算机技术、通信技术和网络条件的发展&#xff0c;集音频、视频、图像、文字、数据为一体的多媒体信息&#xff…

25寒假周报1,2

cf是“可怜楼上月徘徊” PTA是“有心栽花花不开” 牛客是“独钓寒江雪” &#xff08;补题链接&#xff09; 周报一 复习了一下一些基础算法&#xff0c;高级算法没补到。 debug的时候思路一定要清晰&#xff0c;梳理枝节 周报二 做了线段树&#xff0c;莫队&#…

C++病毒

第一期 声明&#xff1a; 仅供损害电脑&#xff0c;不得用于非法。 直接上代码 #include <bits/stdc.h> #include <windows.h> using namespace std; HHOOK g_hHook; LRESULT CALLBACK CBTProc(int nCode, WPARAM wParam, LPARAM lParam) {if (nCode HCBT_ACTI…

DeepSeek为何能爆火

摘要&#xff1a;近年来&#xff0c;DeepSeek作为一款新兴的社交媒体应用&#xff0c;迅速在年轻人群体中走红&#xff0c;引发了广泛关注。本文旨在探讨DeepSeek为何能在短时间内爆火&#xff0c;从而为我国社交媒体的发展提供参考。首先&#xff0c;通过文献分析&#xff0c;…

数据分析如何做EDA

探索性数据分析&#xff08;EDA&#xff0c;Exploratory Data Analysis&#xff09;是数据分析过程中至关重要的一步&#xff0c;其目的是通过统计和可视化技术对数据进行初步分析&#xff0c;从而揭示数据的潜在模式、特征和异常值&#xff0c;并为后续的数据预处理、特征工程…

Faveo Helpdesk存在目录遍历漏洞(CVE-2024-37700)

免责声明: 本文旨在提供有关特定漏洞的深入信息,帮助用户充分了解潜在的安全风险。发布此信息的目的在于提升网络安全意识和推动技术进步,未经授权访问系统、网络或应用程序,可能会导致法律责任或严重后果。因此,作者不对读者基于本文内容所采取的任何行为承担责任。读者在…

NLP_[2]-认识文本预处理

文章目录 1 认识文本预处理1 文本预处理及其作用2. 文本预处理中包含的主要环节2.1 文本处理的基本方法2.2 文本张量表示方法2.3 文本语料的数据分析2.4 文本特征处理2.5数据增强方法2.6 重要说明 2 文本处理的基本方法1. 什么是分词2 什么是命名实体识别3 什么是词性标注 1 认…

Unity-Mirror网络框架-从入门到精通之Discovery示例

文章目录 前言Discovery示例NetworkDiscoveryNetworkDiscoveryHUDServerRequestServerResponse最后前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。本系列文章将为读者提供对Mirror网络框架的深入了解,涵盖从基础到高级的多个主题。Mirror是一个用于Un…

哈佛大学“零点项目”(Project Zero)简介

哈佛大学“零点项目”&#xff08;Project Zero&#xff09;简介 起源与背景 “零点项目”&#xff08;Project Zero&#xff09;由美国哲学家纳尔逊古德曼&#xff08;Nelson Goodman&#xff09;于1967年在哈佛大学教育研究院创立。名称源于“从零开始研究艺术教育”的理念&…

PostgreSQL 18新特性之DML语句RETURNING增强

PostgreSQL 很早就支持 DML 语句的 RETURNING 子句&#xff0c;用于返回插入、更正或者删除的数据。例如&#xff1a; CREATE TABLE t(id int, v numeric); INSERT INTO t(id, v) VALUES(1,1); INSERT INTO t(id, v) VALUES(2,5); INSERT INTO t(id, v) VALUES(3,10);UPDATE t…