【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.27 线性代数王国:矩阵分解实战指南

在这里插入图片描述

1.27 线性代数王国:矩阵分解实战指南

线性代数王国:矩阵分解实战指南
SVD推荐系统实战
稀疏矩阵优化分解
数值稳定性与条件数
量子计算模拟实现
GPU加速性能测试

目录

1.27.1 SVD推荐系统实战
1.27.2 稀疏矩阵优化分解
1.27.3 数值稳定性与条件数
1.27.4 量子计算模拟实现
1.27.5 GPU加速性能测试

矩阵分解
SVD分解
LU分解
QR分解
Cholesky分解
推荐系统
线性方程组
最小二乘法
优化问题
电影推荐案例
量子模拟
GPU加速

1.27.1 SVD推荐系统实战

电影推荐系统完整案例

import numpy as np
from scipy.linalg import svd# 生成用户-电影评分矩阵(6用户x5电影)
ratings = np.array([[5, 3, 0, 1, 2],[4, 0, 0, 1, 0],[1, 1, 0, 5, 0],[1, 0, 0, 4, 0],[0, 1, 5, 4, 0],[2, 1, 3, 0, 5]
], dtype=np.float32)# 执行SVD分解
U, sigma, Vt = svd(ratings, full_matrices=False)
k = 2  # 保留前2个奇异值
U_k = U[:, :k]
sigma_k = np.diag(sigma[:k])
Vt_k = Vt[:k, :]# 重建低秩近似矩阵
approx_ratings = U_k @ sigma_k @ Vt_k# 预测用户3对电影2的评分
user_idx = 2
movie_idx = 1
pred_rating = approx_ratings[user_idx, movie_idx]
print(f"预测评分: {pred_rating:.2f}")  # 输出: 1.07

1.27.2 稀疏矩阵优化分解

交替最小二乘法(ALS)实现

def als(matrix, k=2, steps=10, lambda_=0.1):"""稀疏矩阵分解优化算法"""m, n = matrix.shapeU = np.random.rand(m, k)V = np.random.rand(n, k)for _ in range(steps):# 固定V,优化Ufor i in range(m):V_i = V[matrix[i] > 0]  # 只考虑有评分的项if len(V_i) > 0:A = V_i.T @ V_i + lambda_ * np.eye(k)b = V_i.T @ matrix[i, matrix[i] > 0]U[i] = np.linalg.solve(A, b)# 固定U,优化Vfor j in range(n):U_j = U[matrix[:,j] > 0]if len(U_j) > 0:A = U_j.T @ U_j + lambda_ * np.eye(k)b = U_j.T @ matrix[matrix[:,j] > 0, j]V[j] = np.linalg.solve(A, b)return U, V# 运行ALS分解
U_als, V_als = als(ratings, k=2)
print("ALS分解误差:", np.linalg.norm(ratings - U_als @ V_als.T))

1.27.3 数值稳定性与条件数

条件数对分解的影响

# 生成希尔伯特矩阵(高条件数)
hilbert = np.array([[1/(i+j+1) for j in range(5)] for i in range(5)])# 计算条件数
cond_number = np.linalg.cond(hilbert)
print(f"希尔伯特矩阵条件数: {cond_number:.2e}")  # 约4.77e+05# LU分解稳定性测试
P, L, U = scipy.linalg.lu(hilbert)
reconstructed = P @ L @ U
error = np.linalg.norm(hilbert - reconstructed)
print(f"LU分解重建误差: {error:.2e}")  # 约1.11e-15# 数学公式
$$
\kappa(A) = \|A\| \cdot \|A^{-1}\|
$$

1.27.4 量子计算模拟实现

量子态演化模拟

def quantum_evolution(initial_state, hamiltonian, time):"""量子态演化模拟"""# 计算时间演化算子evolution_op = scipy.linalg.expm(-1j * hamiltonian * time)# 应用演化算子return evolution_op @ initial_state# 定义单量子位系统
sigma_x = np.array([[0, 1], [1, 0]])  # Pauli X矩阵
initial = np.array([1, 0])            # |0>态
H = 0.5 * sigma_x                     # 哈密顿量# 模拟时间演化
times = np.linspace(0, 2*np.pi, 100)
states = [quantum_evolution(initial, H, t) for t in times]# 可视化概率演化
prob_0 = [np.abs(s[0])**2 for s in states]
plt.plot(times, prob_0)
plt.title("量子态|0>的概率演化")
plt.xlabel("时间")
plt.ylabel("概率")
plt.show()

1.27.5 GPU加速性能测试

CuPy加速SVD分解

import cupy as cp# 生成大规模矩阵
cpu_matrix = np.random.rand(5000, 5000)
gpu_matrix = cp.asarray(cpu_matrix)# CPU性能测试
%timeit np.linalg.svd(cpu_matrix)  # 约120秒# GPU性能测试
%timeit cp.linalg.svd(gpu_matrix)  # 约18秒(含数据传输)# 仅计算时间比较
gpu_matrix = cp.random.rand(5000, 5000)  # 直接在GPU生成数据
%timeit cp.linalg.svd(gpu_matrix)        # 约9秒# 加速比计算
$$
\text{加速比} = \frac{120}{9} \approx 13.3\times
$$

参考文献

参考资料名称链接
NumPy线性代数文档https://numpy.org/doc/stable/reference/routines.linalg.html
推荐系统实践https://www.coursera.org/learn/matrix-factorization
数值线性代数https://mathworld.wolfram.com/ConditionNumber.html
量子计算基础https://qiskit.org/textbook/ch-algorithms/quantum-simulation.html
CuPy文档https://docs.cupy.dev/en/stable/reference/generated/cupy.linalg.svd.html
稀疏矩阵分解论文https://dl.acm.org/doi/10.1145/1401890.1401944
IEEE浮点标准https://ieeexplore.ieee.org/document/8766229
量子算法综述https://arxiv.org/abs/1804.03719
GPU加速原理https://developer.nvidia.com/cuda-toolkit
矩阵分解教程https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf

这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/69692.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

巴塞尔问题详解:计算所有正整数平方的倒数之和

1 相关历史背景 巴塞尔问题(Basel Problem)是数学史上一个著名的问题,由意大利数学家皮埃特罗门戈利(Pietro Mengoli)在1644年首次提出。 但他未能解决,只能给出小数点后六位的近似解是1.644934&#xff0…

android 圆形弹窗摄像头开发踩坑——源码————未来之窗跨平台操作

一、飘窗刷脸&#xff0c;拍照采用飘窗 刷脸认证安卓接口采用飘窗具有在不干扰用户主要操作的前提下以醒目方式引导用户完成认证&#xff0c;且能灵活定制样式以提升用户体验和认证效率的优点 二、踩坑只有一个扇形 <?xml version"1.0" encoding"utf-8&quo…

电子电气架构 --- 在智能座舱基础上定义人机交互

我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 简单&#xff0c;单纯&#xff0c;喜欢独处&#xff0c;独来独往&#xff0c;不易合同频过着接地气的生活…

图漾相机——Sample_V1示例程序

文章目录 1.SDK支持的平台类型1.1 Windows 平台1.2 Linux平台 2.SDK基本知识2.1 SDK目录结构2.2 设备组件简介2.3 设备组件属性2.4 设备的帧数据管理机制2.5 SDK中的坐标系变换 3.Sample_V1示例程序3.1 DeviceStorage3.2 DumpCalibInfo3.3 NetStatistic3.4 SimpleView_SaveLoad…

如何使用formlinker,重构微软表单创建的数字生产力法则?

仅需三步&#xff1a;上传文件-下载文件-导入文件到微软表单 凌晨两点的格式炼狱&#xff1a;被浪费的300万小时人类创造力 剑桥大学的实验室曾捕捉到一组震撼数据&#xff1a;全球教育工作者每年花在调整试题格式上的时间&#xff0c;足够建造3座迪拜哈利法塔。当北京某高校的…

idea对jar包内容进行反编译

1.先安装一下这个插件java Bytecode Decompiler 2.找到这个插件的路径&#xff0c;在idea的plugins下面的lib文件夹内&#xff1a;java-decompiler.jar。下面是我自己本地的插件路径&#xff0c;以作参考&#xff1a; D:\dev\utils\idea\IntelliJ IDEA 2020.1.3\plugins\java-d…

C#方法(练习)

1.定义一个函数&#xff0c;输入三个值,找出三个数中的最小值 2.定义一个函数&#xff0c;输入三个值,找出三个数中的最大值 3.定义一个函数&#xff0c;输入三个值,找出三个数中的平均值 4.定义一个函数&#xff0c;计算一个数的 N 次方 Pow(2, 3)返回8 5.传入十一…

1.五子棋对弈python解法——2024年省赛蓝桥杯真题

问题描述 原题传送门&#xff1a;1.五子棋对弈 - 蓝桥云课 "在五子棋的对弈中&#xff0c;友谊的小船说翻就翻&#xff1f;" 不&#xff01;对小蓝和小桥来说&#xff0c;五子棋不仅是棋盘上的较量&#xff0c;更是心与心之间的沟通。这两位挚友秉承着"友谊第…

基于STM32的智能停车场管理系统设计

目录 引言系统设计 硬件设计软件设计 系统功能模块 车辆识别与进出管理模块车位检测与引导模块计费与支付模块数据存储与查询模块远程监控与异常报警模块 控制算法 车牌识别与车辆进出管理算法车位检测与引导算法计费与支付处理算法数据存储与远程反馈算法 代码实现 车辆检测与…

单细胞-第五节 多样本数据分析,打分R包AUCell

文件在单细胞\5_GC_py\1_single_cell\3.AUCell.Rmd 1.基因 rm(list = ls()) load("g.Rdata")2.AUCell https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897923 IF: NA NA NA用这个文章里的方法,将单细胞亚群的marker基因与ros相关基因取交集,用作AUCell的基因集…

HBase-2.5.10 伪分布式环境搭建【Mac】

文章目录 前言一、搭建单节点Zookeeper1. 解压zookeeper2. 配置环境变量3. 修改配置文件4. 启动zk 二、搭建伪分布式Hbase1. 解压hbase2. 配置环境变量3. 修改配置4. 启动HBase 前言 搭建hbase伪分布式环境 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例仅供参…

蓝牙技术在物联网中的应用有哪些

蓝牙技术凭借低功耗、低成本和易于部署的特性&#xff0c;在物联网领域广泛应用&#xff0c;推动了智能家居、工业、医疗、农业等多领域发展。 智能家居&#xff1a;在智能家居系统里&#xff0c;蓝牙技术连接各类设备&#xff0c;像智能门锁、智能灯泡、智能插座、智能窗帘等。…

NLP深度学习 DAY5:Seq2Seq 模型详解

Seq2Seq&#xff08;Sequence-to-Sequence&#xff09;模型是一种用于处理输入和输出均为序列任务的深度学习模型。它最初被设计用于机器翻译&#xff0c;但后来广泛应用于其他任务&#xff0c;如文本摘要、对话系统、语音识别、问答系统等。 核心思想 Seq2Seq 模型的目标是将…

DeepSeek模型:开启人工智能的新篇章

DeepSeek模型&#xff1a;开启人工智能的新篇章 在当今快速发展的技术浪潮中&#xff0c;人工智能&#xff08;AI&#xff09;已经成为了推动社会进步和创新的核心力量之一。而DeepSeek模型&#xff0c;作为AI领域的一颗璀璨明珠&#xff0c;正以其强大的功能和灵活的用法&…

单细胞-第四节 多样本数据分析,下游画图

文件在单细胞\5_GC_py\1_single_cell\2_plots.Rmd 1.细胞数量条形图 rm(list ls()) library(Seurat) load("seu.obj.Rdata")dat as.data.frame(table(Idents(seu.obj))) dat$label paste(dat$Var1,dat$Freq,sep ":") head(dat) library(ggplot2) lib…

freeswitch在centos上编译过程

操作系统&#xff1a;centos9-last usr/local/freeswitch/bin/freeswitch -version FreeSWITCH version: 1.10.13-devgit~20250125T131725Z~3f1e4bf90a~64bit (git 3f1e4bf 2025-01-25 13:17:25Z 64bit)vi /etc/ssh/sshd_config ip a nmtui reboot ip a curl -o /etc/pki/rpm-…

NLP模型大对比:Transformer >Seq2Seq > LSTM > RNN > n-gram

结论 Transformer 大于 传统的Seq2Seq 大于 LSTM 大于 RNN 大于 传统的n-gram n-gram VS Transformer 我们可以用一个 图书馆查询 的类比来解释它们的差异&#xff1a; 一、核心差异对比 维度n-gram 模型Transformer工作方式固定窗口的"近视观察员"全局关联的&q…

Julius AI 人工智能数据分析工具介绍

Julius AI 是一款由 Casera Labs 开发的人工智能数据分析工具&#xff0c;旨在通过自然语言交互和强大的算法能力&#xff0c;帮助用户快速分析和可视化复杂数据。这款工具特别适合没有数据科学背景的用户&#xff0c;使数据分析变得简单高效。 核心功能 自然语言交互&#x…

H3CNE-31-BFD

Bidirectional Forwarding Dection&#xff0c;双向转发检查 作用&#xff1a;毫秒级故障检查&#xff0c;通常结合三层协议&#xff08;静态路由、vrrp、ospf、BGP等&#xff09;&#xff0c;实现链路故障快速检查。 BFD配置示例 没有中间的SW&#xff0c;接口down&#xff…

2025最新版MySQL安装使用指南

2025最新版MySQL安装使用指南 The Installation and Usage Guide of the Latest Version of Oracle MySQL in 2025 By JacksonML 1. 获取MySQL 打开Chrome浏览器&#xff0c;访问官网链接&#xff1a;https://www.mysql.com/ &#xff0c;随即打开MySQL官网主页面&#xff…