【Flink银行反欺诈系统设计方案】3.欺诈的7种场景和架构方案、核心表设计

【Flink银行反欺诈系统设计方案】3.欺诈的7种场景和架构方案、核心表设计

    • 1. **欺诈场景分类与案例说明**
      • 1.1 **大额交易欺诈**
      • 1.2 **异地交易欺诈**
      • 1.3 **高频交易欺诈**
      • 1.4 **异常时间交易欺诈**
      • 1.5 **账户行为异常**
      • 1.6 **设备指纹异常**
      • 1.7 **交易金额突变**
    • 2. **普适性软件架构设计方案**
      • 2.1 **总体架构**
      • 2.2 **核心组件**
    • 3. **表设计**
      • 3.1 风控规则表(`risk_rules`)
      • 3.2 交易数据表(`transaction_data`)
      • 3.3 风控结果表(`risk_results`)
    • 4. **Flink 实现方案**
      • 4.1 数据接入
      • 4.2 规则加载与动态更新
      • 4.3 规则匹配
      • 4.4 告警与拦截
      • 4.5 数据存储
    • 5. **总结**

概要:
作为软件架构师,设计一个银行反欺诈风控系统需要综合考虑多种欺诈场景,并针对每个场景设计相应的检测规则和实现方案。以下是详细的设计思路、欺诈场景分类、软件架构设计方案以及表设计。


1. 欺诈场景分类与案例说明

1.1 大额交易欺诈

  • 场景描述:单笔交易金额异常高,可能是盗刷或洗钱行为。
  • 案例
    • 用户平时交易金额在1000元以内,突然出现一笔50000元的交易。
    • 短时间内多次大额交易。

1.2 异地交易欺诈

  • 场景描述:用户在短时间内出现在不同地理位置的交易,可能是卡被盗刷。
  • 案例
    • 用户在北京有一笔交易,5分钟后在上海又有一笔交易。

1.3 高频交易欺诈

  • 场景描述:用户在短时间内进行多次交易,可能是恶意套现或盗刷。
  • 案例
    • 用户在1分钟内进行了10笔交易。

1.4 异常时间交易欺诈

  • 场景描述:用户在非正常时间进行交易,可能是欺诈行为。
  • 案例
    • 用户在凌晨3点进行大额交易。

1.5 账户行为异常

  • 场景描述:用户的交易行为与历史行为不符,可能是账户被盗用。
  • 案例
    • 用户平时只在工作日交易,突然在周末进行大额交易。

1.6 设备指纹异常

  • 场景描述:用户使用陌生设备进行交易,可能是账户被盗用。
  • 案例
    • 用户平时使用手机A进行交易,突然使用手机B进行大额交易。

1.7 交易金额突变

  • 场景描述:用户交易金额突然大幅增加或减少,可能是异常行为。
  • 案例
    • 用户平时交易金额在1000元以内,突然出现一笔100000元的交易。

2. 普适性软件架构设计方案

2.1 总体架构

  • 数据源:银行交易系统(如Kafka、MQ等)。
  • 实时处理层:Flink 实时处理引擎。
  • 规则引擎:基于Flink CEP或自定义规则引擎实现。
  • 存储层
    • MySQL/PostgreSQL(规则配置)。
    • HBase/Cassandra(交易数据)。
    • Elasticsearch(日志和告警)。
  • 告警与拦截:通过API或消息队列通知风控系统或直接拦截交易。
  • 可视化与监控:Grafana/Prometheus 监控系统运行状态,Kibana 查看日志。

2.2 核心组件

  1. 数据接入层

    • 从银行交易系统实时消费交易数据。
    • 支持多种数据源(Kafka、MQ、JDBC等)。
  2. 规则引擎层

    • 动态加载规则表中的规则。
    • 使用Flink CEP或自定义规则引擎实现规则匹配。
  3. 存储层

    • 规则表:存储动态配置的风控规则。
    • 交易表:存储交易流水数据。
    • 风控结果表:存储风控检测结果。
  4. 告警与拦截层

    • 对高风险交易实时告警或拦截。
    • 支持多种告警方式(邮件、短信、API等)。
  5. 可视化与监控层

    • 实时监控系统运行状态。
    • 查看风控结果和日志。

3. 表设计

3.1 风控规则表(risk_rules

字段名类型说明
rule_idBIGINT规则ID(主键)
rule_nameVARCHAR规则名称
rule_conditionVARCHAR规则条件(如:amount > 10000)
rule_actionVARCHAR规则动作(如:告警、拦截)
priorityINT规则优先级
is_activeBOOLEAN是否启用
create_timeTIMESTAMP创建时间
update_timeTIMESTAMP更新时间

3.2 交易数据表(transaction_data

字段名类型说明
transaction_idVARCHAR交易ID(主键)
user_idVARCHAR用户ID
amountDECIMAL交易金额
timestampTIMESTAMP交易时间
merchant_idVARCHAR商户ID
locationVARCHAR交易地点
device_idVARCHAR设备ID

3.3 风控结果表(risk_results

字段名类型说明
result_idBIGINT结果ID(主键)
transaction_idVARCHAR交易ID
rule_idBIGINT触发的规则ID
risk_levelVARCHAR风险等级(如:高、中、低)
action_takenVARCHAR采取的动作(如:告警、拦截)
create_timeTIMESTAMP检测时间

4. Flink 实现方案

4.1 数据接入

  • 使用Flink的Kafka Connector从银行交易系统实时消费交易数据。
  • 数据格式:JSON或Avro。
FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("transaction_topic", new SimpleStringSchema(), properties
);
DataStream<String> transactionStream = env.addSource(consumer);

4.2 规则加载与动态更新

  • 使用Flink的JDBC Connector定期从risk_rules表加载规则。
  • 通过Broadcast State将规则广播到所有并行任务。
// 加载规则表
DataStream<RiskRule> ruleStream = env.addSource(JdbcSource.buildJdbcSource().setQuery("SELECT * FROM risk_rules WHERE is_active = true").setRowTypeInfo(RiskRule.getTypeInfo())
);// 广播规则
BroadcastStream<RiskRule> broadcastRuleStream = ruleStream.broadcast(RuleDescriptor.of());

4.3 规则匹配

  • 使用Flink CEP或自定义规则引擎实现规则匹配。
  • 根据规则条件(如金额、地点、频率等)判断是否触发风控。
transactionStream.connect(broadcastRuleStream).process(new RiskDetectionProcessFunction()).addSink(new RiskResultSink());

4.4 告警与拦截

  • 对高风险交易,调用外部API或发送消息到Kafka进行告警或拦截。
riskResultStream.filter(result -> "HIGH".equals(result.getRiskLevel())).addSink(new AlertSink());

4.5 数据存储

  • 使用Flink的JDBC Sink或HBase Sink将风控结果写入risk_results表。
riskResultStream.addSink(JdbcSink.sink("INSERT INTO risk_results VALUES (?, ?, ?, ?, ?)",(statement, result) -> {statement.setString(1, result.getTransactionId());statement.setLong(2, result.getRuleId());statement.setString(3, result.getRiskLevel());statement.setString(4, result.getActionTaken());statement.setTimestamp(5, new Timestamp(result.getCreateTime()));},JdbcExecutionOptions.builder().build(),new JdbcConnectionOptions.JdbcConnectionOptionsBuilder().withUrl("jdbc:mysql://localhost:3306/risk_db").withUsername("root").withPassword("password").build())
);

5. 总结

  • 欺诈场景:涵盖大额交易、异地交易、高频交易、异常时间交易、账户行为异常、设备指纹异常等。
  • 架构设计:基于Flink实现实时数据处理、动态规则匹配、告警与拦截。
  • 表设计:规则表、交易表、风控结果表。
  • Flink实现:通过Flink CEP或自定义规则引擎实现规则匹配,支持动态规则更新。

通过以上设计,可以实现一个高效、灵活且可扩展的银行反欺诈风控系统。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/71409.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

迷你世界脚本生物接口:Creature

生物接口&#xff1a;Creature 彼得兔 更新时间: 2024-05-22 17:51:22 继承自 Actor 具体函数名及描述如下: 序号 函数名 函数描述 1 getAttr(...) 生物属性获取 2 setAttr(...) 生物属性设置 3 isAdult(...) 判断该生物是否成年 4 setOxygenNeed(…

深入理解三色标记、CMS、G1垃圾回收器

三色标记算法 简介 三色标记算法是一种常见的垃圾收集的标记算法&#xff0c;属于根可达算法的一个分支&#xff0c;垃圾收集器CMS&#xff0c;G1在标记垃圾过程中就使用该算法 三色标记法&#xff08;Tri-color Marking&#xff09;是垃圾回收中用于并发标记存活对象的核心算…

自动驾驶---不依赖地图的大模型轨迹预测

1 前言 早期传统自动驾驶方案通常依赖高精地图&#xff08;HD Map&#xff09;提供道路结构、车道线、交通规则等信息&#xff0c;可参考博客《自动驾驶---方案从有图迈进无图》&#xff0c;本质上还是存在问题&#xff1a; 数据依赖性高&#xff1a;地图构建成本昂贵&#xf…

Xshell及Xftp v8.0安装与使用-生信工具050

官网 https://www.xshell.com/zh/free-for-home-school/ XShell & Xftp 详解 1. XShell 介绍 1.1 XShell 是什么&#xff1f; XShell 是一款强大的 Windows 终端模拟器&#xff0c;主要用于远程管理 Linux、Unix 服务器。它支持 SSH、Telnet、Rlogin 及 SFTP 协议&…

跨域-告别CORS烦恼

跨域-告别CORS烦恼 文章目录 跨域-告别CORS烦恼[toc]1-参考网址2-思路整理1-核心问题2-个人思考3-脑洞打开4-个人思考-修正版1-个人思考2-脑洞打开 3-知识整理1-什么是跨域一、同源策略简介什么是源什么是同源是否是同源的判断哪些操作不受同源策略限制跨域如何跨域 二、CORS 简…

PE文件结构详解(DOS头/NT头/节表/导入表)使用010 Editor手动解析notepad++.exe的PE结构

一&#xff1a;DOS部分 DOS部分分为DOS MZ文件头和DOS块&#xff0c;其中DOS MZ头实际是一个64位的IMAGE_DOS——HEADER结构体。 DOS MZ头部结构体的内容如下&#xff0c;我们所需要关注的是前面两个字节&#xff08;e_magic&#xff09;和后面四个字节&#xff08;e_lfanew&a…

Node JS 调用模型Xenova_all-MiniLM-L6-v2实战

本篇通过将句子数组转换为句子的向量表示&#xff0c;并通过平均池化和归一化处理&#xff0c;生成适合机器学习或深度学习任务使用的特征向量为例&#xff0c;演示通过NodeJS 的方式调用Xenova/all-MiniLM-L6-v2 的过程。 关于 all-MiniLM-L6-v2 的介绍&#xff0c;可以参照上…

【C++学习篇】智能指针

目录 1. 智能指针的使用场景分析 2. RAII和智能指针的设计思路 3. C标准库智能指针的使用 4.shared_ptr和weak_ptr 4.1shared_ptr的循环引用问题 4.2 weak_ptr 1. 智能指针的使用场景分析 下⾯程序中我们可以看到&#xff0c;new了以后&#xff0c;我们也delete了&#xff0c…

IntelliJ IDEA集成MarsCode AI

IntelliJ IDEA集成MarsCode AI IDEA中安装插件 安装完毕之后登录自己的账号 点击链接&#xff0c;注册账号 https://www.marscode.cn/events/s/i5DRGqqo/ 可以选择不同的模型

日期格式与字符串不匹配bug

异常特征&#xff1a;java.lang.IllegalArgumentException: invalid comparison: java.time.LocalDateTime and java.lang.String ### Error updating database. Cause: java.lang.IllegalArgumentException: invalid comparison: java.time.LocalDateTime and java.lang.Str…

C++中的无锁编程

引言 在当今多核处理器普及的时代&#xff0c;并发编程已成为高性能应用程序开发的关键技术。传统的基于锁的同步机制虽然使用简单&#xff0c;但往往会带来性能瓶颈和死锁风险。无锁编程&#xff08;Lock-Free Programming&#xff09;作为一种先进的并发编程范式&#xff0c…

FastGPT 引申:借鉴 FastGPT 基于MySQL + ES 实现知识库(含表结构以及核心代码)

文章目录 FastGPT 引申&#xff1a;借鉴 FastGPT 基于MySQL ES 实现知识库&#xff08;含表结构以及核心代码&#xff09;一、整体思路二、存储结构2.1 MySQL 表结构(1) knowledge_base_dataset(2) knowledge_base_data(3) knowledge_base_index(4) ai_kb_relation 2.2 Elasti…

Python学习(十四)pandas库入门手册

目录 一、安装与导入二、核心数据结构2.1 Series 类型&#xff08;一维数组&#xff09;2.2 DataFrame 类型&#xff08;二维数组&#xff09; 三、数据读取与写入3.1 读取 CSV 和 Excel 文件3.2 写入数据 四、数据清洗与处理4.1 处理缺失值4.2 数据筛选4.3 数据排序 五、数据分…

【Python 数据结构 4.单向链表】

目录 一、单向链表的基本概念 1.单向链表的概念 2.单向链表的元素插入 元素插入的步骤 3.单向链表的元素删除 元素删除的步骤 4.单向链表的元素查找 元素查找的步骤 5.单向链表的元素索引 元素索引的步骤 6.单向链表的元素修改 元素修改的步骤 二、Python中的单向链表 ​编辑 三…

第1章:项目概述与环境搭建

第1章&#xff1a;项目概述与环境搭建 学习目标 了解YunChangAction灵感记录应用的整体架构和功能掌握SwiftUI开发环境的配置方法创建项目基础结构并理解文件组织方式实现应用的启动屏幕和基本主题设置 理论知识讲解 灵感记录应用概述 灵感记录应用是一种专门设计用来帮助…

2025.3.3总结

周一这天&#xff0c;我约了绩效教练&#xff0c;主要想了解专业类绩效的考核方式以及想知道如何拿到一个更好的绩效。其他的岗位并不是很清楚&#xff0c;但是专业类的岗位&#xff0c;目前采取绝对考核&#xff0c;管理层和专家岗采取相对考核&#xff0c;有末尾淘汰。 通过…

FastGPT 源码:基于 LLM 实现 Rerank (含Prompt)

文章目录 基于 LLM 实现 Rerank函数定义预期输出实现说明使用建议完整 Prompt 基于 LLM 实现 Rerank 下边通过设计 Prompt 让 LLM 实现重排序的功能。 函数定义 class LLMReranker:def __init__(self, llm_client):self.llm llm_clientdef rerank(self, query: str, docume…

LeetCode 1745.分割回文串 IV:动态规划(用III或II能直接秒)

【LetMeFly】1745.分割回文串 IV&#xff1a;动态规划&#xff08;用III或II能直接秒&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/palindrome-partitioning-iv/ 给你一个字符串 s &#xff0c;如果可以将它分割成三个 非空 回文子字符串&#xff0c;…

25年3月5日

1.思维导图 2.不太会 #include "head.h" int main(int argc, const char *argv[]) {int fdopen("../xiaoxin.bmp","O_RDONLY");if(fd-1)printf("open error");//大小struct stat st;if(stat("…

全球首创!微软发布医疗AI助手,终结手写病历时代

今天凌晨&#xff0c;微软发布了医疗界首个用于临床工作流程的AI助手Microsoft Dragon Copilot。 Dragon Copilot是基于语音文本的混合架构&#xff0c;能够将医生的语音或临床口述内容实时转换为文本。例如&#xff0c;医生可以通过语音输入患者的病历信息、医嘱或诊断结果&a…