LeetCode 热题 100 53. 最大子数组和

LeetCode 热题 100 | 53. 最大子数组和

大家好,今天我们来解决一道经典的算法题——最大子数组和。这道题在 LeetCode 上被标记为中等难度,要求我们找出一个具有最大和的连续子数组,并返回其最大和。下面我将详细讲解解题思路,并附上 Python 代码实现。


题目描述

给定一个整数数组 nums,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6。

解题思路

这道题的核心是找到一个连续子数组,使得其和最大。我们可以使用 动态规划分治法 来解决这个问题。

核心思想
  1. 动态规划

    • 定义 dp[i] 表示以 nums[i] 结尾的子数组的最大和。
    • 状态转移方程:
      dp[i] = max(dp[i-1] + nums[i], nums[i])
    • 最终结果是 dp 数组中的最大值。
  2. 分治法

    • 将数组分成左右两部分,分别求解左右部分的最大子数组和。
    • 求解跨越中间的最大子数组和。
    • 返回左部分、右部分和跨越中间的最大值。

代码实现

方法 1:动态规划
def maxSubArray(nums):""":type nums: List[int]:rtype: int"""n = len(nums)dp = [0] * ndp[0] = nums[0]  # 初始化 dp[0]max_sum = dp[0]  # 初始化最大和for i in range(1, n):dp[i] = max(dp[i-1] + nums[i], nums[i])  # 状态转移max_sum = max(max_sum, dp[i])  # 更新最大和return max_sum
方法 2:分治法
def maxSubArray(nums):""":type nums: List[int]:rtype: int"""def divide_and_conquer(left, right):if left == right:return nums[left]mid = (left + right) // 2# 分别求解左右部分的最大子数组和left_max = divide_and_conquer(left, mid)right_max = divide_and_conquer(mid + 1, right)# 求解跨越中间的最大子数组和left_sum = nums[mid]right_sum = nums[mid + 1]temp = left_sumfor i in range(mid - 1, left - 1, -1):temp += nums[i]left_sum = max(left_sum, temp)temp = right_sumfor i in range(mid + 2, right + 1):temp += nums[i]right_sum = max(right_sum, temp)cross_max = left_sum + right_sum# 返回左部分、右部分和跨越中间的最大值return max(left_max, right_max, cross_max)return divide_and_conquer(0, len(nums) - 1)

代码解析

动态规划
  1. 初始化

    • dp[0] 表示以 nums[0] 结尾的子数组的最大和,初始化为 nums[0]
    • max_sum 初始化为 dp[0]
  2. 状态转移

    • 对于每个 i,计算 dp[i],表示以 nums[i] 结尾的子数组的最大和。
    • 如果 dp[i-1] + nums[i]nums[i] 大,则继续扩展子数组;否则,从 nums[i] 重新开始。
  3. 更新最大和

    • 每次计算 dp[i] 后,更新 max_sum
  4. 返回结果

    • 返回 max_sum
分治法
  1. 递归终止条件

    • 如果 left == right,返回 nums[left]
  2. 递归求解左右部分

    • 分别递归求解左部分和右部分的最大子数组和。
  3. 求解跨越中间的最大子数组和

    • 从中间向左右扩展,求解跨越中间的最大子数组和。
  4. 返回最大值

    • 返回左部分、右部分和跨越中间的最大值。

复杂度分析

  • 时间复杂度

    • 动态规划:O(n),其中 n 是数组的长度。我们只需要遍历数组一次。
    • 分治法:O(n log n),每次递归将数组分成两部分,递归深度为 log n,每层需要 O(n) 的时间求解跨越中间的最大子数组和。
  • 空间复杂度

    • 动态规划:O(n),需要额外的 dp 数组。
    • 分治法:O(log n),递归调用栈的深度为 log n。

示例运行

示例 1
# 输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(maxSubArray(nums))  # 输出: 6
示例 2
# 输入:nums = [1]
nums = [1]
print(maxSubArray(nums))  # 输出: 1
示例 3
# 输入:nums = [5,4,-1,7,8]
nums = [5, 4, -1, 7, 8]
print(maxSubArray(nums))  # 输出: 23

总结

通过动态规划或分治法,我们可以高效地找到最大子数组和。动态规划的时间复杂度为 O(n),是最优的解法;分治法的时间复杂度为 O(n log n),适合理解分治思想。希望这篇题解对你有帮助!如果还有其他问题,欢迎继续提问!

关注我,获取更多算法题解和编程技巧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/71130.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【计算机网络入门】初学计算机网络(九)

目录 1.令牌传递协议 2. 局域网&IEEE802 2.1 局域网基本概念和体系结构 3. 以太网&IEEE802.3 3.1 MAC层标准 3.1.1 以太网V2标准 ​编辑 3.2 单播广播 3.3 冲突域广播域 4. 虚拟局域网VLAN 1.令牌传递协议 先回顾一下令牌环网技术,多个主机形成…

Java 大视界 -- Java 大数据中的时间序列数据异常检测算法对比与实践(103)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…

Android Activity栈关系解析

在 Android 系统中,这些类共同构成了 Activity 任务栈管理的核心架构。它们的关系可以类比为一栋大楼的管理体系,每个类负责不同层级的任务。以下是它们的详细解释和实际场景示例: 1. ActivityRecord(活动记录) 是什么…

【0011】HTML其他文本格式化标签详解(em标签、strong标签、b标签、i标签、sup标签、sub标签......)

如果你觉得我的文章写的不错&#xff0c;请关注我哟&#xff0c;请点赞、评论&#xff0c;收藏此文章&#xff0c;谢谢&#xff01; 本文内容体系结构如下&#xff1a; 本文旨在深入探讨HTML中其他的文本格式化标签&#xff0c;主要有<em> 标签、<strong> 标签、…

华为AP 4050DN-HD的FIT AP模式改为FAT AP,家用FAT基本配置

在某鱼买了两台华为AP 4050DN-HD , AP是二手的 , 在AC上上过线 , 所以就不能开机自选为FIP模式了 我没有AC无线控制器 , 就是买一个自己玩 , AP又是FIT瘦AP模式 ,所以我就想把AP的瘦AP模式改为FAT胖AP模式 1. 准备工作 1.1下载好对应软件&#xff0c;进入到 企业业务网站去下…

【Linux网络-HTTP协议】HTTP基础概念+构建HTTP

代码定位&#xff1a;南毅c/Linux - Gitee.com HTTP协议 介绍 虽然我们说&#xff0c;应用层协议是我们程序猿自己定的.但实际上,已经有大佬们定义了一些现成的,又非常好用的应用层协议,供我们直接参考使用。HTTP(超文本传输协议)就是其中之一。 在互联网世界中&#xff0c…

SpringSecurity 实现token 认证

配置类 Configuration EnableWebSecurity EnableGlobalMethodSecurity(prePostEnabledtrue) public class SpringSecurityConfig extends WebSecurityConfigurerAdapter { Bean Override public AuthenticationManager authenticationManagerBean() throws Exception {return s…

基于互联网协议的诊断通信(DoIP)

1、ISO 13400标准和其他汽车网络协议标准有何不同&#xff1f; ISO 13400 标准即 DoIP 协议标准&#xff0c;与其他常见汽车网络协议标准&#xff08;如 CAN、LIN、FlexRay 等&#xff09;有以下不同&#xff1a; 通信基础与适用场景 ISO 13400&#xff1a;基于互联网协议&a…

LabVIEW DataSocket 通信库详解

dataskt.llb 是 LabVIEW 2019 内置的核心函数库之一&#xff0c;位于 vi.lib\Platform\ 目录下&#xff0c;专注于 DataSocket 技术的实现。DataSocket 是 NI 提供的网络通信协议&#xff0c;支持跨平台、跨设备的实时数据共享&#xff0c;广泛应用于远程监控、分布式系统集成等…

Android 端侧运行 LLM 框架 MNN 及其应用

MNN Chat Android App - 基于 MNN 引擎的智能聊天应用 一、MNN 框架简介与工作原理1.1 什么是 MNN&#xff1f;1.2 MNN 的工作原理 二、MNN Chat Android App2.1 MNN Chat 的功能2.2 MNN Chat 的优势2.3 MNN Chat Android App 的使用 三、总结 随着移动端人工智能需求的日益增长…

ARM Linux LCD上实时预览摄像头画面

文章目录 1、前言2、环境介绍3、步骤4、应用程序编写4.1、lcd初始化4.2、摄像头初始化4.3、jpeg解码4.4、开启摄像头4.5、完整的程序如下 5、测试5.1、编译应用程序5.2、运行应用程序 6、总结 1、前言 本次应用程序主要针对支持MJPEG格式输出的UVC摄像头。 2、环境介绍 rk35…

[代码规范]接口设计规范

一个优雅的接口要如何设计&#xff1f;有哪些设计规范可以遵循&#xff1f; 下面抛砖引玉&#xff0c;分享一些规范。 目录 1、RESTful API 设计最佳实践 2、Shneiderman 的 8 条黄金法则 3、Nielsen 的 10 条启发式规则 1、RESTful API 设计最佳实践 一共18条&#xff0c;参考…

如何在Python用Plot画出一个简单的机器人模型

如何在Python中使用 Plot 画出一个简单的模型 在下面的程序中&#xff0c;首先要知道机器人的DH参数&#xff0c;然后计算出每一个关节的位置&#xff0c;最后利用 plot 函数画出关节之间的连杆就可以了&#xff0c;最后利用 animation 库来实现一个动画效果。 import matplo…

Spark核心之01:架构部署、sparkshell、程序模板

spark内存计算框架 一、主题 spark核心概念spark集群架构spark集群安装部署spark-shell的使用通过IDEA开发spark程序 二、要点 1. spark是什么 Apache Spark™ is a unified analytics engine for large-scale data processing. spark是针对于大规模数据处理的统一分析引擎…

如何通过Python网络爬虫技术应对复杂的反爬机制?

要使用Python网络爬虫技术绕过复杂的反爬虫机制&#xff0c;可以采取以下几种策略&#xff1a; 设置User-Agent&#xff1a;通过设置不同的User-Agent&#xff0c;模拟正常用户的浏览器访问&#xff0c;避免被网站识别为爬虫。可以使用fake_useragent库来随机生成User-Agent。…

[Windows] 批量为视频或者音频生成字幕 video subtitle master 1.5.2

Video Subtitle Master 1.5.2 介绍 Video Subtitle Master 1.5.2 是一款功能强大的客户端工具&#xff0c;能够批量为视频或音频生成字幕&#xff0c;还支持批量将字幕翻译成其他语言。该工具具有跨平台性&#xff0c;无论是 mac 系统还是 windows 系统都能使用。 参考原文&a…

神经网络代码入门解析

神经网络代码入门解析 import torch import matplotlib.pyplot as pltimport randomdef create_data(w, b, data_num): # 数据生成x torch.normal(0, 1, (data_num, len(w)))y torch.matmul(x, w) b # 矩阵相乘再加bnoise torch.normal(0, 0.01, y.shape) # 为y添加噪声…

DeepSeek 开源狂欢周(一)FlashMLA:高效推理加速新时代

上周末&#xff0c;DeepSeek在X平台&#xff08;Twitter&#xff09;宣布将开启连续一周的开源&#xff0c;整个开源社区为之沸腾&#xff0c;全球AI爱好者纷纷为关注。没错&#xff0c;这是一场由DeepSeek引领的开源盛宴&#xff0c;推翻了传统推理加速的种种限制。这周一&…

EfficientViT模型详解及代码复现

核心架构 在EfficientViT模型的核心架构中,作者设计了一种创新的 sandwich布局 作为基础构建块,旨在提高内存效率和计算效率。这种布局巧妙地平衡了自注意力层和前馈神经网络层的比例,具体结构如下: 基于深度卷积的Token Interaction :通过深度卷积操作对输入特征进行初步…

大语言模型(LLM)如何赋能时间序列分析?

引言 近年来&#xff0c;大语言模型&#xff08;LLM&#xff09;在文本生成、推理和跨模态任务中展现了惊人能力。与此同时&#xff0c;时间序列分析作为工业、金融、物联网等领域的核心技术&#xff0c;长期依赖传统统计模型&#xff08;如ARIMA&#xff09;或深度学习模型&a…