ds回答-开源llm应用开发平台

以下是几个著名的开源 LLM 应用开发平台,涵盖不同场景和技术特点:


1. Dify

  • 特点:低代码 / 无代码开发、支持 RAG 检索、Agent 智能体、模型管理、LLMOps 全流程优化。
  • 核心功能:可视化工作流编排、数百种模型兼容(如 GPT、Llama3)、50+ 内置工具集成(谷歌搜索、DALL・E)。
  • 适用场景:企业级 AI 应用、私有化部署、复杂多模态任务。
  • 开源地址:GitHub

2. Anything LLM

  • 特点:全栈 AI 应用框架,支持多用户、多模型、多文档管理。
  • 核心功能:工作区隔离上下文、自定义 Agent 工具(如网页浏览、代码执行)、多向量数据库兼容(Milvus、Chroma)。
  • 适用场景:企业知识库问答、多模态聊天机器人。
  • 开源地址:GitHub

3. LibreChat

  • 特点:类 ChatGPT 界面,支持本地与远程模型混合部署。
  • 核心功能:多模型切换(Claude、GPT-4、Gemini)、图像分析、代码生成、多语言支持。
  • 适用场景:个人 / 企业私有 ChatGPT 替代品。
  • 开源地址:GitHub

4. LazyLLM(商汤)

  • 特点:低代码开发,以数据流为核心的 AI 应用框架。
  • 核心功能:10 行代码构建 RAG 应用、支持复杂 Agent 流程(分支、循环)、一键部署到网页 / 企业微信。
  • 适用场景:快速原型开发、企业知识库定制。
  • 开源地址:GitHub

5. Open WebUI(Ollama WebUI)

  • 特点:离线优先,支持 Ollama 和本地模型。
  • 核心功能:多模型对话、RAG 本地集成、代码高亮、语音交互。
  • 适用场景:完全私有化部署、离线 AI 服务。
  • 开源地址:GitHub

6. Text Generation WebUI

  • 特点:基于 Gradio 的轻量化界面,支持多后端模型。
  • 核心功能:兼容 OpenAI API、LoRA 微调工具、多聊天模式(指令 / 对话)。
  • 适用场景:学术研究、快速模型测试。
  • 开源地址:GitHub

选择建议:

  • 企业级需求:优先 Dify、LazyLLM(低代码)或 Anything LLM(多用户管理)。
  • 私有部署:LibreChat、Open WebUI(离线)。
  • 技术探索:Text Generation WebUI(灵活调试)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/70902.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LDR6020 PD3.1 协议芯片在特定设备中的应用

在电子设备互联互通的时代,芯片技术成为提升设备性能与功能的关键驱动力。LDR6020 PD3.1 协议芯片以其出色的性能,在 TYPE-C 台式显示器 / 便携显示器、一拖二快充线以及手机电脑转接器等设备中展现出独特价值,为用户带来更便捷、高效的使用体…

wzl-django学习

####################################################总的urls.py from django.contrib import admin from django.urls import path,include, re_path from django.views.static import serve from django.conf import settings from drf_yasg import openapi from drf_yas…

python -ssh学习

def exe_sshcmd(ip,username,userpswd,port,cmd): """ 功能:SSH登录到指定设备,并执行对应的命令 入参:前四项为ssh登录shell的ip和port,具备管理员权限的用户名和密码, cmd可以…

PDF处理控件Aspose.PDF教程:使用 Python 将 PDF 转换为 TIFF

TIFF文件是高质量图像的首选。它们广泛用于印刷、存档和图形设计。企业通常需要转换PDF文档以获得更好的兼容性。了解如何以编程方式执行此转换可以节省时间和资源。在这篇教程中,我们将探讨如何使用 Python 将 PDF 转换为 TIFF。 本文涵盖以下主题: P…

服务器IPMI用户名、密码批量检查

背景 大规模服务器部署的时候,少不了较多的网管和监测平台,这些平台会去监控服务器的性能、硬件等指标参数,为了便于管理和控制,则需要给服务器IPMI带外管理添加较多的用户,这就需要对较多的服务器检查所对应的IPMI用…

< 自用文儿 > Gobuster 暴力扫描工具与 SecLists 安全测试词表集合

Ethice 道德问题 GFW 的保护下,很多的设备操作系统是停留在更老的版本,应用软件也是,因此很多的漏洞没有被修复。通讯没有使用加密,例如网页没有使用 HTTPS 网站很多。几乎是半裸的在网络上等着被食。 不做恶是下限。 环境&…

【Cadence射频仿真学习笔记】2.4GHz低噪放LNA仿真设计

课程分为3个部分, 一、LNA结构与噪声优化方法 噪声优化的方法是:限定功耗的噪声和功率同时匹配噪声匹配和功率匹配一般不会同时达到, 对于PCSNIM结构的噪声分析,我们只需要了解与哪些参数有关优化思路是:1.信号源阻抗…

【洛谷入门赛】B4042 顺序结构 202410 场

题意 给你一个变量 a a a:小 Y 会让 a a a 先加 5 5 5 再把它们的和乘 3 3 3 最后输出;小 L 会让 a a a 先乘 3 3 3 再加 5 5 5 最后输出。 要求出小 Y 和小 L 分别会输出什么东西。 思路 这道题按照题目意思模拟就可以了,重点是考…

Android13修改多媒体默认音量

干就完了! 设置音量为最大音量,修改如下: /framework/base/media/java/android/media/AudioSystem.java/** hide */public static int[] DEFAULT_STREAM_VOLUME new int[] {4, // STREAM_VOICE_CALL7, // STREAM_SYSTEM5, // STREAM_RING-5, // STREAM_MUSIC15, // STREAM…

【Azure 架构师学习笔记】- Azure Databricks (13) -- 搭建Medallion Architecture part 1

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Databricks】系列。 接上文 【Azure 架构师学习笔记】- Azure Databricks (12) – Medallion Architecture简介 前言 上文已经介绍了关于Medallion的知识,本文开始用ADB 来实现, 但是基于内容较…

社交APP如何打造高粘性兴趣社群

想要打造一款成功的社交 APP 兴趣社群,关键在于充分激发用户的主动分享意愿,同时构建起深度互动机制。与其在一开始就将大量资源投入到广告宣传中,倒不如把精力集中在深度挖掘和精心维护首批核心用户上。例如,可以尝试设计在线测试…

【操作系统】同步与互斥

同步与互斥 一、同步与互斥的概念1.1 同步与异步1.2 进程互斥 二、进程互斥的实现2.1 软件实现2.1.1 单标志法2.1.2 双标志先检查法2.1.3 双标志后检查法2.1.4 Peterson法 2.2 硬件实现2.2.1 中断指令2.2.2 TestAndSet指令2.2.3 Swap指令 三、互斥锁四、信号量机制4.1 整型信号…

C++ 正则表达式分组捕获入门指南

在 C 中,正则表达式(regex)是一种用于匹配字符串模式的强大工具。正则表达式不仅能帮助你查找符合特定模式的字符,还能捕获匹配的子字符串(即分组捕获)。这篇文章将介绍 C 正则表达式中的分组捕获机制&…

使用Docker方式一键部署MySQL和Redis数据库详解

一、前言 数据库是现代应用开发中不可或缺的一部分,MySQL和Redis作为两种广泛使用的数据库系统,分别用于关系型数据库和键值存储。本文旨在通过Docker和Docker Compose的方式,提供一个简洁明了的一键部署方案,确保数据库服务的稳…

性能附录:如何计算并发用户数(摘自高楼老师《性能30讲》)

高楼老师《性能30讲》: 性能测试实战30讲-极客时间 感兴趣的同学可以去读一下,个人感觉写的非常好 目录 什么是并发? 在线用户数、并发用户数怎么计算 总结 什么是并发? 我们假设上图中的这些小人是严格按照这个逻辑到达系统的,那显然,…

基于yolov8的糖尿病视网膜病变严重程度检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的糖尿病视网膜病变严重程度检测系统 基于YOLOv8的糖尿病视网膜病变严重程度检测系统是一款利用深度学习技术,专为糖尿病视网膜病变早期诊断设计的智能辅助工具。该系统采用YOLOv8目标检测模型,结合经过标注和处理的医学影像数…

学习路程八 langchin核心组件 Models补充 I/O和 Redis Cache

前序 之前了解了Models,Prompt,但有些资料又把这块与输出合称为模型输入输出(Model I/O)‌:这是与各种大语言模型进行交互的基本组件。它允许开发者管理提示(prompt),通过通用接口调…

DeepSeek 开源狂欢周(五)正式收官|3FS并行文件系统榨干SSD

千呼万唤始出来!在 DeepSeek 开源周 的第五天,今日正式收官!在大模型训练中,每个epoch都在与存储系统进行光速竞赛——数据加载延迟会扭曲计算时空,KVCache访问瓶颈将引发推理坍缩。DeepSeek开源的 3FS文件系统&#x…

特征工程中的三大向量化工具详解

特征工程中的三大向量化工具详解 在文本处理和特征工程中,TfidfVectorizer、CountVectorizer 和 DictVectorizer 是常用的工具,用于将原始数据转换为机器学习模型可用的数值特征。以下是它们的核心区别、用法及示例: 1. CountVectorizer&…

C++ Qt常见面试题(4):Qt事件过滤器

在 Qt 中,事件过滤器(Event Filter)提供了一种机制,可以拦截并处理对象的事件(如鼠标事件、键盘事件等),在事件到达目标对象之前对其进行预处理。事件过滤器通常用于以下场景: 捕获和处理特定的事件(如鼠标点击、按键等);对事件进行筛选或修改;实现全局的事件监听功…