基于yolov8的糖尿病视网膜病变严重程度检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面

【算法介绍】

基于YOLOv8的糖尿病视网膜病变严重程度检测系统

基于YOLOv8的糖尿病视网膜病变严重程度检测系统是一款利用深度学习技术,专为糖尿病视网膜病变早期诊断设计的智能辅助工具。该系统采用YOLOv8目标检测模型,结合经过标注和处理的医学影像数据集,能够高效且准确地检测并分类糖尿病视网膜病变的不同严重程度。

YOLOv8模型以其高速和高精度的特点,在处理眼底图像时展现了强大的能力。通过优化模型的网络结构和参数设置,该系统实现了对糖尿病视网膜病变的高精度检测,有效辅助医生进行病情评估和诊断。

该系统支持实时图像检测,操作简便,用户只需上传眼底影像,系统即可快速分析并返回检测结果,包括病变的类型和严重程度分类。这不仅提高了诊断效率,还降低了医生的主观经验对诊断结果的影响,使诊断更加客观和准确。

总之,基于YOLOv8的糖尿病视网膜病变严重程度检测系统为糖尿病视网膜病变的早期诊断和治疗提供了有力的支持。

【效果展示】

【测试环境】

windows10
anaconda3+python3.8
torch==2.3.0
ultralytics==8.3.79

【模型可以检测出类别】

mild(轻度)
nodr(无病变)
proliferatedr(增殖性病变)
moderate(中度)
severe(严重)

【训练信息】

参数
训练集图片数1606
验证集图片数179
训练map79.0%
训练精度(Precision)67.7%
训练召回率(Recall)79.7%
验证集测试精度信息

Class

Images

Instances

P

R

mAP50

mAP50-95

all

179

179

0.677

0.797

0.79

0.64

mild

42

42

0.71

0.81

0.825

0.582

nodr

55

55

0.962

0.982

0.992

0.855

proliferatedr

15

15

0.359

0.867

0.765

0.683

moderate

47

47

0.609

0.894

0.749

0.547

severe

20

20

0.743

0.434

0.618

0.534

【部分实现源码】

class Ui_MainWindow(QtWidgets.QMainWindow):signal = QtCore.pyqtSignal(str, str)def setupUi(self):self.setObjectName("MainWindow")self.resize(1280, 728)self.centralwidget = QtWidgets.QWidget(self)self.centralwidget.setObjectName("centralwidget")self.weights_dir = './weights'self.picture = QtWidgets.QLabel(self.centralwidget)self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))self.picture.setStyleSheet("background:black")self.picture.setObjectName("picture")self.picture.setScaledContents(True)self.label_2 = QtWidgets.QLabel(self.centralwidget)self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))self.label_2.setObjectName("label_2")self.cb_weights = QtWidgets.QComboBox(self.centralwidget)self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))self.cb_weights.setObjectName("cb_weights")self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)self.label_3 = QtWidgets.QLabel(self.centralwidget)self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))self.label_3.setObjectName("label_3")self.hs_conf = QtWidgets.QSlider(self.centralwidget)self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))self.hs_conf.setProperty("value", 25)self.hs_conf.setOrientation(QtCore.Qt.Horizontal)self.hs_conf.setObjectName("hs_conf")self.hs_conf.valueChanged.connect(self.conf_change)self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))self.dsb_conf.setMaximum(1.0)self.dsb_conf.setSingleStep(0.01)self.dsb_conf.setProperty("value", 0.25)self.dsb_conf.setObjectName("dsb_conf")self.dsb_conf.valueChanged.connect(self.dsb_conf_change)self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))self.dsb_iou.setMaximum(1.0)self.dsb_iou.setSingleStep(0.01)self.dsb_iou.setProperty("value", 0.45)self.dsb_iou.setObjectName("dsb_iou")self.dsb_iou.valueChanged.connect(self.dsb_iou_change)self.hs_iou = QtWidgets.QSlider(self.centralwidget)self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))self.hs_iou.setProperty("value", 45)self.hs_iou.setOrientation(QtCore.Qt.Horizontal)self.hs_iou.setObjectName("hs_iou")self.hs_iou.valueChanged.connect(self.iou_change)self.label_4 = QtWidgets.QLabel(self.centralwidget)self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))self.label_4.setObjectName("label_4")self.label_5 = QtWidgets.QLabel(self.centralwidget)self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))self.label_5.setObjectName("label_5")self.le_res = QtWidgets.QTextEdit(self.centralwidget)self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))self.le_res.setObjectName("le_res")self.setCentralWidget(self.centralwidget)self.menubar = QtWidgets.QMenuBar(self)self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))self.menubar.setObjectName("menubar")self.setMenuBar(self.menubar)self.statusbar = QtWidgets.QStatusBar(self)self.statusbar.setObjectName("statusbar")self.setStatusBar(self.statusbar)self.toolBar = QtWidgets.QToolBar(self)self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)self.toolBar.setObjectName("toolBar")self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)self.actionopenpic = QtWidgets.QAction(self)icon = QtGui.QIcon()icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.actionopenpic.setIcon(icon)self.actionopenpic.setObjectName("actionopenpic")self.actionopenpic.triggered.connect(self.open_image)self.action = QtWidgets.QAction(self)icon1 = QtGui.QIcon()icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.action.setIcon(icon1)self.action.setObjectName("action")self.action.triggered.connect(self.open_video)self.action_2 = QtWidgets.QAction(self)icon2 = QtGui.QIcon()icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.action_2.setIcon(icon2)self.action_2.setObjectName("action_2")self.action_2.triggered.connect(self.open_camera)self.actionexit = QtWidgets.QAction(self)icon3 = QtGui.QIcon()icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)self.actionexit.setIcon(icon3)self.actionexit.setObjectName("actionexit")self.actionexit.triggered.connect(self.exit)self.toolBar.addAction(self.actionopenpic)self.toolBar.addAction(self.action)self.toolBar.addAction(self.action_2)self.toolBar.addAction(self.actionexit)self.retranslateUi()QtCore.QMetaObject.connectSlotsByName(self)self.init_all()

【使用步骤】

使用步骤:
(1)首先根据官方框架安装好yolov8环境,并安装好pyqt5
(2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可

【提供文件】

python源码
yolov8n.pt模型
训练的map,P,R曲线图(在weights\results.png)
测试图片(在test_img文件夹下面)

注意不提供数据集

【常用评估参数介绍】

在目标检测任务中,评估模型的性能是至关重要的。你提到的几个术语是评估模型性能的常用指标。下面是对这些术语的详细解释:

  1. Class
    • 这通常指的是模型被设计用来检测的目标类别。例如,一个模型可能被训练来检测车辆、行人或动物等不同类别的对象。
  2. Images
    • 表示验证集中的图片数量。验证集是用来评估模型性能的数据集,与训练集分开,以确保评估结果的公正性。
  3. Instances
    • 在所有图片中目标对象的总数。这包括了所有类别对象的总和,例如,如果验证集包含100张图片,每张图片平均有5个目标对象,则Instances为500。
  4. P(精确度Precision)
    • 精确度是模型预测为正样本的实例中,真正为正样本的比例。计算公式为:Precision = TP / (TP + FP),其中TP表示真正例(True Positives),FP表示假正例(False Positives)。
  5. R(召回率Recall)
    • 召回率是所有真正的正样本中被模型正确预测为正样本的比例。计算公式为:Recall = TP / (TP + FN),其中FN表示假负例(False Negatives)。
  6. mAP50
    • 表示在IoU(交并比)阈值为0.5时的平均精度(mean Average Precision)。IoU是衡量预测框和真实框重叠程度的指标。mAP是一个综合指标,考虑了精确度和召回率,用于评估模型在不同召回率水平上的性能。在IoU=0.5时,如果预测框与真实框的重叠程度达到或超过50%,则认为该预测是正确的。
  7. mAP50-95
    • 表示在IoU从0.5到0.95(间隔0.05)的范围内,模型的平均精度。这是一个更严格的评估标准,要求预测框与真实框的重叠程度更高。在目标检测任务中,更高的IoU阈值意味着模型需要更准确地定位目标对象。mAP50-95的计算考虑了从宽松到严格的多个IoU阈值,因此能够更全面地评估模型的性能。

这些指标共同构成了评估目标检测模型性能的重要框架。通过比较不同模型在这些指标上的表现,可以判断哪个模型在实际应用中可能更有效。

 【常见问题】

目标检测训练中,Mean Average Precision(MAP)偏低可能有以下原因:
原因一:欠拟合:如果训练数据量过小,模型可能无法学习到足够的特征,从而影响预测效果,导致欠拟合,进而使MAP偏低。因此可以加大数据集数量
原因二:小目标:如果数据集包含大部分小目标则一般会有可能产生map偏低情况,因为小目标特征不明显,模型很难学到特征。
原因三:模型调参不对:比如学习率调整过大可能会导致学习能力过快,模型参数调节出现紊乱
原因四:过拟合(现在模型基本不存在这种情况):如果模型在训练数据上表现非常好,但在验证或测试数据上表现较差,可能是出现了过拟合。这通常是因为模型参数过多,而训练数据量相对较小,导致模型学习到了训练数据中的噪声或特定模式,而无法泛化到新的数据。如今现在目标检测模型都对这个情况做的很好,很少有这种情况发生。
原因五:场景不一样:验证集验证精度高,测试集不行,则有可能是与训练模型场景图片不一致导致测试map过低
针对以上原因,可以采取以下措施来提高MAP:

(1)优化模型结构:根据任务和数据集的特点选择合适的模型,并尝试使用不同的网络架构和构件来改进模型性能。
(2)增强数据预处理:对数据进行适当的预处理和增强,如数据归一化、缺失值填充、数据扩增等,以提高模型的泛化能力。
(3)调整损失函数:尝试使用不同的损失函数或组合多种损失函数来优化模型性能。
(4)优化训练策略:调整学习率、批次大小、训练轮数等超参数,以及使用学习率衰减、动量等优化算法来改善模型训练效果。
(5)使用预训练模型:利用在大规模数据集上预训练的模型进行迁移学习,可以加速模型收敛并提高性能。
(6)增加数据集数量,尽可能提供多场景图片,提高模型泛化能力,增强模型特征学习能力。
综上所述,提高目标检测训练的MAP需要从多个方面入手,包括优化模型结构、增强数据预处理、调整损失函数、优化训练策略以及使用预训练模型等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/70886.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学习路程八 langchin核心组件 Models补充 I/O和 Redis Cache

前序 之前了解了Models,Prompt,但有些资料又把这块与输出合称为模型输入输出(Model I/O)‌:这是与各种大语言模型进行交互的基本组件。它允许开发者管理提示(prompt),通过通用接口调…

DeepSeek 开源狂欢周(五)正式收官|3FS并行文件系统榨干SSD

千呼万唤始出来!在 DeepSeek 开源周 的第五天,今日正式收官!在大模型训练中,每个epoch都在与存储系统进行光速竞赛——数据加载延迟会扭曲计算时空,KVCache访问瓶颈将引发推理坍缩。DeepSeek开源的 3FS文件系统&#x…

特征工程中的三大向量化工具详解

特征工程中的三大向量化工具详解 在文本处理和特征工程中,TfidfVectorizer、CountVectorizer 和 DictVectorizer 是常用的工具,用于将原始数据转换为机器学习模型可用的数值特征。以下是它们的核心区别、用法及示例: 1. CountVectorizer&…

C++ Qt常见面试题(4):Qt事件过滤器

在 Qt 中,事件过滤器(Event Filter)提供了一种机制,可以拦截并处理对象的事件(如鼠标事件、键盘事件等),在事件到达目标对象之前对其进行预处理。事件过滤器通常用于以下场景: 捕获和处理特定的事件(如鼠标点击、按键等);对事件进行筛选或修改;实现全局的事件监听功…

TCP基本入门-简单认识一下什么是TCP

部分内容来源:小林Coding TCP的特点 1.面向连接 一定是“一对一”才能连接,不能像 UDP 协议可以一个主机同时向多个主机发送消息,也就是一对多是无法做到的 2.可靠的 无论的网络链路中出现了怎样的链路变化,TCP 都可以保证一个…

PING命令TTL解析

在 ping 命令中,TTL(Time to Live,生存时间) 是 IP 数据包的核心字段之一,用于控制数据包在网络中的生命周期。以下是针对 TTL 的简明解析: 1. TTL 的核心作用 防循环机制:TTL 是一个计数器&a…

PySide(PyQT)重新定义contextMenuEvent()实现鼠标右键弹出菜单

在 PySide中,contextMenuEvent() 是 QWidget 类(以及继承自它的所有子类)的一个事件处理方法,主要用于处理上下文菜单事件,也就是当用户在控件上右键点击时触发的事件。 • 通过重新定义contextMenuEvent()来实现自定…

GitHub SSH连接问题解决指南

🔍 GitHub SSH连接问题解决指南 问题描述 遇到错误:ssh: connect to host github.com port 22: Connection refused 说明您的网络环境无法访问GitHub的SSH端口22,常见原因: 防火墙/网络运营商限制(国内常见&#xf…

Go红队开发—并发编程

文章目录 并发编程go协程chan通道无缓冲通道有缓冲通道创建⽆缓冲和缓冲通道 等协程sync.WaitGroup同步Runtime包Gosched()Goexit() 区别 同步变量sync.Mutex互斥锁atomic原子变量 SelectTicker定时器控制并发数量核心机制 并发编程阶段练习重要的细节端口扫描股票监控 并发编程…

RabbitMQ 的介绍与使用

一. 简介 1> 什么是MQ 消息队列(Message Queue,简称MQ),从字面意思上看,本质是个队列,FIFO先入先出,只不过队列中存放的内容是message而已。 其主要用途:不同进程Process/线程T…

常用的AI文本大语言模型汇总

AI文本【大语言模型】 1、文心一言https://yiyan.baidu.com/ 2、海螺问问https://hailuoai.com/ 3、通义千问https://tongyi.aliyun.com/qianwen/ 4、KimiChat https://kimi.moonshot.cn/ 5、ChatGPThttps://chatgpt.com/ 6、魔塔GPT https://www.modelscope.cn/studios/iic…

在自己的数据上复现一下LlamaGen

git仓库:https://github.com/FoundationVision/LlamaGen 数据集准备 如果用ImageFolder读取,则最好和ImageNet一致。 data_path/class_1/image_001.jpgimage_002.jpg...class_2/image_003.jpgimage_004.jpg......class_n/image_005.jpgimage_006.jpg.…

Go入门之接口

type Usber interface {start()stop() } type Phone struct {Name string }func (p Phone) start() {fmt.Println(p.Name, "启动") } func (p Phone) stop() {fmt.Println(p.Name, "关机") } func main() {p : Phone{Name: "华为手机",}var p1 U…

【数据结构进阶】哈希表

🌟🌟作者主页:ephemerals__ 🌟🌟所属专栏:数据结构 目录 前言 一、哈希表的概念 二、哈希函数的实现方法 1. 直接定址法 2. 除留余数法 三、哈希冲突 1. 开放定址法(闭散列&#xff0…

《深度学习实战》第4集:Transformer 架构与自然语言处理(NLP)

《深度学习实战》第4集:Transformer 架构与自然语言处理(NLP) 在自然语言处理(NLP)领域,Transformer 架构的出现彻底改变了传统的序列建模方法。它不仅成为现代 NLP 的核心,还推动了诸如 BERT、…

高效管理 React 状态和交互:我的自定义 Hooks 实践

高效管理 React 状态和交互:自定义 Hooks 实践 在 React 中,Hooks 是一种使我们能够在函数组件中使用状态和副作用的强大工具。随着项目的增大,重复的逻辑可能会出现在多个组件中,这时使用自定义 Hooks 就非常合适。它们帮助我们…

Exoplayer(MediaX)实现音频变调和变速播放

在K歌或录音类应用中变调是个常见需求,比如需要播出萝莉音/大叔音等。变速播放在影视播放类应用中普遍存在,在传统播放器Mediaplayer中这两个功能都比较难以实现,特别在低版本SDK中,而Exoplayer作为google官方推出的Mediaplayer替…

Meta最新研究:从单张照片到3D数字人的革命性突破

随着人工智能技术的发展,3D建模和虚拟人物生成逐渐变得更加普及和高效。Meta(前身为Facebook)的最新研究成果展示了如何仅通过一张普通手机拍摄的照片就能生成高质量、全方位的3D数字人。这项技术不仅适用于虚拟试衣、游戏角色建模,还能广泛应用于AR/VR内容生成等领域。本文…

软件供应链安全工具链研究系列——RASP自适应威胁免疫平台(上篇)

1.1 基本能力 RASP是一种安全防护技术,运行在程序执行期间,使程序能够自我监控和识别有害的输入和行为。也就是说一个程序如果注入或者引入了RASP技术,那么RASP就和这个程序融为一体,使应用程序具备了自我防护的能力,…

2025-02-27 学习记录--C/C++-PTA 7-29 删除字符串中的子串

合抱之木&#xff0c;生于毫末&#xff1b;九层之台&#xff0c;起于累土&#xff1b;千里之行&#xff0c;始于足下。&#x1f4aa;&#x1f3fb; 一、题目描述 ⭐️ 二、代码&#xff08;C语言&#xff09;⭐️ #include <stdio.h> // 引入标准输入输出库&#xff0c…