神经网络常见激活函数 9-CELU函数

文章目录

    • CELU
      • 函数+导函数
      • 函数和导函数图像
      • 优缺点
      • pytorch中的CELU函数
      • tensorflow 中的CELU函数

CELU

  • 连续可微指数线性单元:CELU(Continuously Differentiable Exponential Linear Unit),是一种连续可导的激活函数,结合了 ELUReLU 的特点,旨在解决 ELU 在某些情况下的梯度问题。

函数+导函数

  • CELU函数
    C E L U ( x ) = { x x ≥ 0 α ( e x α − 1 ) x < 0 \rm CELU(x) = \left\{ \begin{array}{} x \quad x \ge 0 \\ \alpha(e^{\frac{x}{\alpha}} - 1) \quad x < 0 \end{array} \right. CELU(x)={xx0α(eαx1)x<0
  • CELU函数导数
    d d x C E L U ( x ) = { 1 x ≥ 0 e x α x < 0 \frac{d}{dx} \rm CELU(x) = \left\{ \begin{array}{} 1 \quad x \ge 0 \\ e^{\frac{x}{\alpha}} \quad x < 0 \end{array} \right. dxdCELU(x)={1x0eαxx<0
    其中, α \alpha α 是一个非负参数,用于控制 x < 0 x<0 x<0时曲线的平滑度。当 α = 0 \alpha=0 α=0时,CELU函数退化为ReLU函数。对于 x < 0 x<0 x<0的部分,CELU使用指数函数来确保梯度不会消失,有助于加速训练过程中的梯度流动。


函数和导函数图像

  • 画图

    下面的是 α = 1 \alpha = 1 α=1

    import numpy as np
    from matplotlib import pyplot as plt# 定义 CELU 函数
    def celu(x, alpha=1.0):return np.where(x > 0, x, alpha * (np.exp(x / alpha) - 1))# 定义 CELU 的导数
    def celu_derivative(x, alpha=1.0):return np.where(x > 0, 1, np.exp(x / alpha))# 生成数据
    x = np.linspace(-3, 3, 1000)
    alpha = 1.0  # 可以调整 alpha 的值
    y = celu(x, alpha)
    y1 = celu_derivative(x, alpha)# 绘制图形
    plt.figure(figsize=(12, 8))
    ax = plt.gca()
    plt.plot(x, y, label=f'CELU (α={alpha})')
    plt.plot(x, y1, label='Derivative')
    plt.title(f'CELU (α={alpha}) and Derivative')# 设置上边和右边无边框
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')# 设置 x 坐标刻度数字或名称的位置
    ax.xaxis.set_ticks_position('bottom')# 设置边框位置
    ax.spines['bottom'].set_position(('data', 0))
    ax.yaxis.set_ticks_position('left')
    ax.spines['left'].set_position(('data', 0))plt.legend(loc=2)
    plt.show()
    

    CELU


优缺点

  • CELU 的优点

    1. 连续可导:CELU函数在整个定义域上都是连续可导的,这使得它在优化过程中更加稳定。
    2. 缓解梯度消失问题:CELU在负输入时引入非零梯度,有助于缓解梯度消失问题。
    3. 平滑过渡:CELU函数在零点处是平滑的,避免了ReLU在零点处的不连续性。
    4. 灵活性:CELU可以表示ReLU作为其特例,当α趋近于0时,CELU趋近于ReLU。
    5. 加速收敛:在某些情况下,CELU能够比ReLU更快地收敛。
  • CELU 的缺点

    1. 计算复杂度高:CELU的指数运算比ReLU更复杂,计算成本更高。
    2. 参数敏感:CELU的性能对α参数的选择较为敏感,不同的α值可能会显著影响模型的性能。
    3. 可能的过拟合风险:在某些情况下,CELU可能会导致模型过拟合,尤其是在数据集较小或模型复杂度较高时。
    4. 训练时间增加:由于计算复杂度的增加,CELU可能会导致训练时间变长。

pytorch中的CELU函数

  • 代码

    import torch# 定义 CELU 函数
    f = torch.nn.CELU()  # PyTorch 提供的 CELU 激活函数模块
    x = torch.randn(2)   # 生成一个随机张量作为输入celu_x = f(x)        # 应用 CELU 函数print(f"x: \n{x}")
    print(f"celu_x:\n{celu_x}")"""输出"""
    x: 
    tensor([-0.8057, -0.8352])
    celu_x:
    tensor([-0.5532, -0.5662])
    

tensorflow 中的CELU函数

  • 代码

    python: 3.10.9

    tensorflow: 2.18.0

    import tensorflow as tf# 创建 CELU 激活函数
    celu = tf.keras.activations.celu# 生成随机输入
    # x = tf.random.normal([2])
    x = [-0.8057, -0.8352]# 应用 CELU 激活函数
    celu_x = celu(x)print(f"x: \n{x}")
    print(f"celu_x:\n{celu_x}")"""输出"""
    x: 
    [-0.8057, -0.8352]
    celu_x:
    [-0.5532249 -0.5662123]
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/69681.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

w~自动驾驶~合集17

我自己的原文哦~ https://blog.51cto.com/whaosoft/13269720 #FastOcc 推理更快、部署友好Occ算法来啦&#xff01; 在自动驾驶系统当中&#xff0c;感知任务是整个自驾系统中至关重要的组成部分。感知任务的主要目标是使自动驾驶车辆能够理解和感知周围的环境元素&#…

Visual Studio 进行单元测试【入门】

摘要&#xff1a;在软件开发中&#xff0c;单元测试是一种重要的实践&#xff0c;通过验证代码的正确性&#xff0c;帮助开发者提高代码质量。本文将介绍如何在VisualStudio中进行单元测试&#xff0c;包括创建测试项目、编写测试代码、运行测试以及查看结果。 1. 什么是单元测…

解决珠玑妙算游戏问题:C 语言实现

一、引言 珠玑妙算游戏&#xff08;the game of master mind&#xff09;是一个有趣的逻辑推理游戏。在编程领域&#xff0c;我们可以通过编写代码来模拟游戏中计算猜中与伪猜中次数的过程。本文将详细介绍如何使用 C 语言实现这一功能&#xff0c;并对核心代码进行解析。 二、…

查询语句来提取 detail 字段中包含 xxx 的 URL 里的 commodity/ 后面的数字串

您可以使用以下 SQL 查询语句来提取 detail 字段中包含 oss.kxlist.com 的 URL 里的 commodity/ 后面的数字串&#xff1a; <p><img style"max-width:100%;" src"https://oss.kxlist.com//8a989a0c55e4a7900155e7fd7971000b/commodity/20170925/20170…

NLP名词解释

序号 NLP层次 名词 解释 1 词法 分词/词性标注 一句话以词切分&#xff0c;NLP第一步&#xff0c;切分的词做词性标注&#xff0c;如动词、名词、谓词等。 实体识别 分词后的实体抽取识别&#xff0c;实体如地点、日期、人物等 实体链接 实体和实体组合链接的物理信…

2024BaseCTF_week4_web上

继续&#xff01;冲冲冲 目录 圣钥之战1.0 nodejs 原型 原型链 原型链污染 回到题目 flag直接读取不就行了&#xff1f; 圣钥之战1.0 from flask import Flask,request import jsonapp Flask(__name__)def merge(src, dst):for k, v in src.items():if hasattr(dst, __geti…

介绍下SpringBoot在分布式架构中,如何实现读写分离

在分布式架构中&#xff0c;Spring Boot 可以通过多种方式实现读写分离&#xff0c;以提升系统性能和扩展性。以下是常见的实现方法&#xff1a; 1. 使用多数据源 通过配置多个数据源&#xff0c;将读操作和写操作分别路由到不同的数据库实例。 实现步骤&#xff1a; 配置多…

摄像头动捕:摄像头+AI精准捕捉动作

在科技蓬勃发展的当下&#xff0c;动作捕捉技术已从最初的小众应用逐渐走进大众视野&#xff0c;广泛渗透到众多领域。其中&#xff0c;摄像头动捕&#xff0c;也就是无穿戴动作捕捉系统&#xff0c;以其独特的技术优势和创新应用&#xff0c;正悄然改变着人们对动作捕捉的认知…

Unity3D Shader 简析:变体与缓存详解

引言 在 Unity3D 中&#xff0c;Shader 是渲染管线的核心部分&#xff0c;负责控制物体的外观和材质表现。Shader 的变体&#xff08;Variants&#xff09;和缓存机制是优化渲染性能的关键。本文将深入探讨 Unity3D 中 Shader 变体的概念、缓存机制以及如何通过代码实现和管理…

机器学习 - 词袋模型(Bag of Words)实现文本情感分类的详细示例

为了简单直观的理解模型训练&#xff0c;我这里搜集了两个简单的实现文本情感分类的例子&#xff0c;第一个例子基于朴素贝叶斯分类器&#xff0c;第二个例子基于逻辑回归&#xff0c;通过这两个例子&#xff0c;掌握词袋模型&#xff08;Bag of Words&#xff09;实现文本情感…

Java JVM(Java Virtual Machine)解析

Java Virtual Machine&#xff08;JVM&#xff09;是Java平台的核心组成部分&#xff0c;它负责执行Java字节码&#xff0c;并提供了一个运行时环境。本文将深入探讨JVM的工作原理、组成部分以及其在Java开发中的重要性。 一、JVM的基本概念 JVM是一个虚拟的计算机&#xff0…

Miniforge —— 轻量化的 conda 解决方案

引言 在日常使用中&#xff0c;我们常常使用 Anaconda 或 Miniconda 来管理 Python 环境和包。但由于 Anaconda/Miniconda 属于商业产品&#xff0c;当企业规模超过一定人数时就会涉及付费问题。相比之下&#xff0c;Miniforge 是由社区主导维护的一个完全免费的替代方案&…

【CS61A 2024秋】Python入门课,全过程记录P7(Week13 Macros至完结)【完结撒花!】

文章目录 关于新的问题更好的解决方案Week13Mon Macros阅读材料Lab 11: Programs as Data, MacrosQ1: WWSD: QuasiquoteQ2: If ProgramQ3: Exponential PowersQ4: Repeat Wed SQL阅读材料Disc 11: MacrosQ1: Mystery MacroQ2: Multiple AssignmentQ3: Switch Optional Contest:…

《Python百炼成仙》11-20章(不定时跟新)

第十一章 条件渡劫if-else问心 武当金顶的云海翻涌着二进制雪暴&#xff0c;七十二峰化作擎天而立的布尔冰柱。叶军踩着《周易》残页跃上紫霄宫檐角&#xff0c;看见薛香被冰封在水晶般的条件表达式中心&#xff1a; if 道心澄澈:破妄剑意 100else:心魔熵值 * 2楔子三元寒渊 …

Tomcat添加到Windows系统服务中,服务名称带空格

要将Tomcat添加到Windows系统服务中&#xff0c;可以通过Tomcat安装目录中“\bin\service.bat”来完成&#xff0c;如果目录中没有service.bat&#xff0c;则需要使用其它方法。 打到CMD命令行窗口&#xff0c;通过cd命令跳转到Tomcat安装目录的“\bin\”目录&#xff0c;然后执…

WPS接入DeepSeek模型

1.wps 下载安装 WPS-支持多人在线协作编辑Word、Excel和PPT文档_WPS官方网站 &#xff08;最好是安装最新的wps&#xff09; 2.offieceAi工具下载安装 软件下载 | OfficeAI助手 下载后安装下载下来的两个工具。安装路径可以自行修改 3.打开WPS,点击文件-》 选项-》信任中心 勾…

数据结构与算法之数组: LeetCode 905. 按奇偶排序数组 (Ts版)

按奇偶排序数组 https://leetcode.cn/problems/sort-array-by-parity/description/ 描述 给你一个整数数组 nums&#xff0c;将 nums 中的的所有偶数元素移动到数组的前面&#xff0c;后跟所有奇数元素。 返回满足此条件的 任一数组 作为答案。 示例 1 输入&#xff1a;n…

Qt简单使用正则表达式

正则表达式 用于数据处理&#xff0c;数据查询&#xff0c;数据格式验证&#xff0c;替换文本&#xff0c;提取字串&#xff0c;相比str函数正则技术&#xff0c;开销小 在Qt简单使用正则表达式 在qt中使用类QRegExp类使用正则表达式 需要使用头文件 #include <QRegExp>…

LabVIEW 用户界面设计基础原则

在设计LabVIEW VI的用户界面时&#xff0c;前面板的外观和布局至关重要。良好的设计不仅提升用户体验&#xff0c;还能提升界面的易用性和可操作性。以下是设计用户界面时的一些关键要点&#xff1a; 1. 前面板设计原则 交互性&#xff1a;组合相关的输入控件和显示控件&#x…

使用开源项目xxl-cache构建多级缓存

xxl-cache简介 官网地址&#xff1a;https://www.xuxueli.com/xxl-cache/ 概述 XXL-CACHE 是一个 多级缓存框架&#xff0c;高效组合本地缓存和分布式缓存(RedisCaffeine)&#xff0c;支持“多级缓存、一致性保障、TTL、Category隔离、防穿透”等能力&#xff1b;拥有“高性…