STM32系统架构介绍

STM32系统架构

  • 1. CM3/4系统架构
  • 2. CM3/4系统架构-----存储器组织结构
    • 2.1 寄存器地址映射(特殊的存储器)
    • 2.2 寄存器地址计算
    • 2.3 寄存器的封装
  • 3. CM3/4系统架构-----时钟系统

STM32 和 ARM 以及 ARM7是什么关系?

  • ARM 是一个做芯片标准的公司,它负责的是芯片内核的架构设计;
  • ARM7STM32ST等芯片公司生产的某一种类型的芯片。
  • ST 是一个不做标准的芯片公司,根据 ARM 公司提供的芯片内核标准设计自己的芯片。所以,任何一个做 Cortex-M3 芯片,他们的内核结构都是一样的,不同的是他们的存储器容量,片上外设,IO 以及其他模块的区别。不同公司设计的 Cortex-M3 芯片他们的端口数量,串口数量,控制方法这些都是有区别的,这些资源他们可以根据自己的需求理念来设计。

1. CM3/4系统架构

在这里插入图片描述

注意:CM3和CM4系统架构有差异,上面为CM3系统架构,下列为CM4系统架构。
在这里插入图片描述
主系统由 32 位多层 AHB 总线矩阵构成,可实现以下部分的互连:

八条主控总线七条被控总线
内核I总线(不适用于CM3)内部 Flash ICode 总线
内核D总线内部 Flash DCode 总线
内核S总线主要内部 SRAM1 (112 KB)
DMA1存储器总线辅助内部 SRAM2 (16 KB)
DMA2 存储器总线描述辅助内部 SRAM3 (64 KB)
DMA2 外设总线(不适用于CM3)AHB1 外设(包括 AHB-APB 总线桥和 APB 外设)
以太网 DMA 总线AHB2 外设(不适用于CM3)
USB OTG HS DMA 总线(不适用于CM3)FSMC(不适用于CM3)

  借助总线矩阵,可以实现主控总线到被控总线的访问,这样即使在多个高速外设同时运行期间,系统也可以实现并发访问和高效运行。64 KB CCM(内核耦合存储器)数据 RAM 不属于总线矩阵,只能通过 CPU 对其进行访问。

总线接口描述
S0:
I 总线
此总线用于将CM3/4内核的指令总线连接到总线矩阵。内核通过此总线获取指令。 此总线访问的对象是包含代码的存储器(内部 Flash/SRAM 或通过 FSMC 的外部存储器)
S1:
D 总线
此总线用于将CM3/4数据总线和 64 KB CCM 数据 RAM 连接到总线矩阵。内核通过此总线进行立即数加载和调试访问。此总线访问的对象是包含代码或数据的存储器(内部Flash 或通过 FSMC 的外部存储器)。
S2:
S 总线
此总线用于将CM3/4内核的系统总线连接到总线矩阵。此总线用于访问位于外设 或 SRAM 中的数据。也可通过此总线获取指令(效率低于 ICode)。此总线访问的对象是 112 KB、64 KB 和 16 KB 的内部 SRAM、包括 APB 外设在内的 AHB1 外设、AHB2 外设以及通过 FSMC 的外部存储器。
S3/4:
DMA 存储器总线
此总线用于将 DMA 存储器总线主接口连接到总线矩阵。DMA 通过此总线来执行存储器数据的传入和传出。此总线访问的对象是数据存储器:内部 SRAM(112 KB、64 KB、16 KB)以及通过 FSMC 的外部存储器。
S5:
DMA 外设总线
此总线用于将 DMA 外设主总线接口连接到总线矩阵。DMA 通过此总线访问 AHB 外设或执行存储器间的数据传输。此总线访问的对象是 AHB 和 APB 外设以及数据存储器:内部 SRAM 以及通过 FSMC 的外部存储器。
S6:
以太网 DMA 总线
此总线用于将以太网 DMA 主接口连接到总线矩阵。以太网 DMA 通过此总线向存储器存取数据。此总线访问的对象是数据存储器:内部 SRAM(112 KB、64 KB 和 16 KB)以及通过 FSMC 的外部存储器。
S7:
USB OTG HS DMA 总线
此总线用于将 USB OTG HS DMA 主接口连接到总线矩阵。USB OTG DMA 通过此总线向存储器加载/存储数据。此总线访问的对象是数据存储器:内部 SRAM(112 KB、64 KB 和 16 KB)以及通过 FSMC 的外部存储器。
总线矩阵总线矩阵用于主控总线之间的访问仲裁管理。仲裁采用循环调度算法。
AHB/APB 总线桥 (APB)借助两个 AHB/APB 总线桥 APB1 和 APB2,可在 AHB 总线与两个 APB 总线之间实现完全同步的连接,从而灵活选择外设频率。


在这里插入图片描述

  STM32 芯片是已经封装好的成品,主要由内核和片上外设组成。若与电脑类比,内核与外设就如同电脑上的 CPU 与主板、内存、显卡、硬盘的关系。STM32F103 采用的是 Cortex-M3 内核,内核即 CPU,由 ARM 公司设计。ARM 公司并不生产芯片,而是出售其芯片技术授权。芯片生产厂商 (SOC) 如 ST、TI、Freescale,负责在内核之外设计部件并生产整个芯片,这些内核之外的部件被称为核外外设或片上外设。如 GPIO、USART(串口)、I2C、SPI 等都叫做片上外设。
  Cortex-M处理器基于一种加载-存储架构,数据需要从存储器中加载和处理后,使用多个单独的指令写回存储器。例如:要增加SRAM中存储的数据值,处理器需要使用一条指令从SRAM中读出数据,并且将数据放到处理器的寄存器中,然后使用第二条指令增加寄存器中的数据值,最后使用第三条指令将数据值写回寄存器。


  内核即CPU内部的各种译码和执行电路。指令对中断控制器(NVIC)、系统计时器(SysTick)、三阶流水线(取指、解码、执行)、浮点单元(FPU)和指令跟踪接口(ITM)等的操作,其实都是对其寄存器的操作,它们都是由内部寄存器构成的。对这些寄存器的了解参考( cortex-m3与cortex-m4中的寄存器)。

内核的主要组成部分:

  1. 内核Core‌:处理器最核心的部分,负责几乎所有的运算和控制程序运行过程,包括中断响应服务。内核由多个部分构成,包括中断控制器(NVIC)系统计时器(SysTick)、三阶流水线(取指、解码、执行)、浮点单元(FPU)指令跟踪接口(ITM)‌
  2. 调试系统‌:主要用于固件的调试和监视系统的运行状态。它支持JTAG或2针串行线调试(SWD),支持多处理器和实时跟踪‌。
  3. 寄存器组‌:‌
    通用寄存器组‌:包括堆栈指针、连接寄存器、程序计数器等‌。
    程序状态寄存器(xPSR):用于存储程序的状态信息。‌
    中断屏蔽寄存器组‌:用于控制中断的屏蔽。
    控制寄存器(CONTROL):用于控制处理器的各种功能。
  4. 存储器保护单元MPU:是内核中的一个模块,用于控制和管理存储器的访问权限。它并不是ARM内核的一部分,而是处理器内部的一个独立模块‌。
  5. 内存管理单元MMU:将虚地址转换成物理地址。


指令的执行过程与寄存器的关系:

  1. 指令获取与执行‌:ARM处理器在执行指令时,首先从内存中获取指令,并将其存储在寄存器中。处理器通过寄存器读取指令并执行相应的操作。例如,当处理器执行一条ARM指令时,程序计数器(PC)的值会增加4个字节;而执行一条Thumb指令时,PC的值会增加2个字节‌
  2. ‌寄存器的作用‌:ARM处理器有37个寄存器,包括31个通用寄存器和6个状态寄存器。通用寄存器用于存储数据和地址,而状态寄存器用于标识CPU的工作状态和程序的运行状态。寄存器在指令执行过程中起着关键作用,它们存储指令、数据和地址,帮助处理器高效地执行任务‌
  3. 工作模式与寄存器‌:ARM处理器支持7种运行模式,包括用户模式、快速中断模式、外部中断模式、管理模式、数据访问终止模式、系统模式和未定义指令中止模式。不同的运行模式下,寄存器的使用权限和功能有所不同。例如,用户模式下,程序不能直接访问所有系统资源,而特权模式下则可以‌。
  4. ‌异常处理与寄存器‌:在异常发生时,处理器会切换到相应的异常处理模式,并保存当前的执行状态。异常处理过程中,寄存器的使用也非常重要。例如,当发生异常时,系统会将下一条指令存入链接寄存器(LR),并将当前程序状态字(CPSR)保存到备份程序状态字(SPSR),然后跳转到异常处理函数。处理完成后,系统会恢复之前的执行状态‌。

  
详细的介绍参考下列文档:

  • 《Cortex-M3权威指南(中文)》
  • 《CM3技术参考手册》
  • 《STM32中文参考手册_V10》
  • 《Cortex M3与M4权威指南》
  • 《STM32F3与F4系列Cortex M4内核编程手册》
  • 《STM32F4xx参考手册_V4(中文版)》

2. CM3/4系统架构-----存储器组织结构

程序存储器、数据存储器、寄存器和 I/O 端口排列在同一个顺序的 4 GB 地址空间内。
 STM32是一个32位单片机,可以很方便的访问4GB以内的存储空间(2^32 = 4GB),Cortex M3/M4内核将STM32芯片架构中的所有结构,包括:FLASHSRAM外设相关寄存器等全部组织在同一个4GB的线性地址空间内,我们可以通过C语言来访问这些地址空间,从而操作相关外设(读/写)。数据字节以小端格式(小端模式)存放在存储器中,数据的高字节保存在内存的高地址中,而数据的低字节保存在内存的低地址中。
存储器本身是没有地址信息的,我们对存储器分配地址的过程就叫存储器映射。这个分配一般由芯片厂商做好了,芯片厂商将所有的存储器及外设资源都映射在一个4GB的地址空间上(8个块),从而可以通过访问对应的地址,访问具体的外设。存储器空间包括程序代码、数据、外设以及处理器内部的调试支持部件。
 4GB空间分成8个块,每个块512MB,其中有很多保留区域,这是因为一般的芯片制造厂家是不可能把4GB空间用完的,同时,为了方便后续型号升级,会将一些空间预留。
存储器组织结构如图所示:
在这里插入图片描述


【详情见 <CM3/CM4存储器映射>】

  MPU为监控总线传输的可编程设备,需要通过软件(一般是嵌入式OS)配置。若MPU存在,应用程序可以将存储器空间分为多个部分,并为每个部分定义访问权限。当违反访问规则时,错误异常就会产生,错误异常处理则会分析问题,而且如果可能,将错误加以修复。一般情况下,OS会设置MPU以保护OS内核和其他特权任务使用的数据,防止恶意用户程序的破坏。而且OS也可以选择将不同用户任务使用的存储器隔离开来。这些处理有助于检测系统错误,并且提高了系统在处理错误情况时的健壮性。MPU也可以将系统配置为只读,防止意外擦除SRAM中的数据或覆盖指令代码。MPU默认禁止,若应用不需要存储器保护特性,就无须将其初始化。
  NVIC处理异常,可以处理多个中断请求IRQ和一个不可屏蔽中断NMI请求,IRQ一般由片上外设或外部中断输入通过I/O端口产生,NMI可用于看门狗定时器或掉电检测。处理器内部有SysTick定时器,它可以产生周期性的定时中断请求,可用于嵌入式OS计时或没有OS的应用中的简单定时控制。


注意:对CM3/4的操作其实就是对存储器映射中的寄存器的操作,通过对寄存器的操作来操作内存或其他外设等。

2.1 寄存器地址映射(特殊的存储器)

  给存储器分配地址的过程叫存储器映射,寄存器是一类特殊的存储器,它的每个位都有特定的功能,可以实现对外设/功能的控制,给寄存器的地址命名的过程就叫寄存器映射。
  举个简单的例子,大家家里面的纸张就好比通用存储器,用来记录数据是没问题的,但是不会有具体的动作,只能做记录,而你家里面的电灯开关,就好比寄存器了,假设你家有8个灯,就有8个开关(相当于一个8位寄存器),这些开关也可以记录状态,同时还能让电灯点亮/关闭,是会产生具体动作的。为了方便区分和使用,我们会给每个开关命名,比如厨房开关、大厅开关、卧室开关等,给开关命名的过程,就是寄存器映射。
  我们以GPIO的ODR寄存器为例,其参考手册的描述如图所示:
在这里插入图片描述
寄存器名字:每个寄存器都有一个对应的名字,以简单表达其作用,并方便记忆,这里GPIOx_ODR表示寄存器英文名,x可以从A~G,说明有7个这样的寄存器)。
寄存器偏移量及复位值:地址偏移量表示相对该外设基地址的偏移,GPIOB 的外设基地址是:0x4002 0400。那么GPIOB_ODR寄存器的地址就是:0x4002 0414。复位值表示该寄存器在系统复位后的默认值,可以用于分析外设的默认状态。
寄存器位表:描述寄存器每一个位的作用(共32bit),这里表示ODR寄存器的第15位(bit),位名字为 ODR15,rw表示该寄存器可读写(r,可读取;w,可写入)。
位功能描述:描述寄存器每个位的功能,这里表示位015,对应ODR0ODR15,每个位控制一个IO口的输出状态。


由 < 3.2 库开发和寄存器的关系 > 学习可知:

#define GPIOB_ODR *(unsigned int *)(0x40020414)
GPIOB_ODR = 0XFFFF;

stm32f407xx.h 里面使用结构体方式对 STM32F407 的寄存器做了详细映射。


注意:CM3/4的内部寄存器和外设寄存器的映射和操作封装文件位于标准外设库/HAL库中,详情见< 3.5 库开发和寄存器的关系>

2.2 寄存器地址计算

某个寄存器地址,由三个参数决定:

  1. 总线基地址(BUS_BASE_ADDR)
  2. 外设基于总线基地址的偏移量(PERIPH_OFFSET)
  3. 寄存器相对外设基地址的偏移量(REG_OFFSET)

寄存器地址 = BUS_BASE_ADDR + PERIPH_OFFSET + REG_OFFSET


总线基地址(BUS_BASE_ADDR)
在这里插入图片描述
外设基于总线基地址的偏移量(PERIPH_OFFSET)
在这里插入图片描述
在这里插入图片描述
寄存器相对外设基地址的偏移量(REG_OFFSET)
在这里插入图片描述

2.3 寄存器的封装

【详情见 < 3.6 C语言对寄存器的封装>】

3. CM3/4系统架构-----时钟系统

【详情见 <CM3/CM4时钟系统>】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/69532.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙NEXT开发-发布三方库

开发一个三方库 如需发布一个 har 包&#xff0c;必须包含 oh-package.json5、README.md&#xff0c;CHANGELOG.md 和 LICENSE 四个文件&#xff0c;若文件缺失&#xff0c;会导致上架至中心仓失败。 HAR&#xff08;Harmony Archive&#xff09;是静态共享包&#xff0c;可以…

CSS 实现下拉菜单效果实例解析

1. 引言 在 Web 开发过程中&#xff0c;下拉菜单是一种常见且十分实用的交互组件。很多前端教程都提供过简单的下拉菜单示例&#xff0c;本文将以一个简洁的实例为出发点&#xff0c;从 HTML 结构、CSS 样式以及整体交互逻辑三个层面进行详细解析&#xff0c;帮助大家理解纯 C…

半导体制造工艺讲解

目录 一、半导体制造工艺的概述 二、单晶硅片的制造 1.单晶硅的制造 2.晶棒的切割、研磨 3.晶棒的切片、倒角和打磨 4.晶圆的检测和清洗 三、晶圆制造 1.氧化与涂胶 2.光刻与显影 3.刻蚀与脱胶 4.掺杂与退火 5.薄膜沉积、金属化和晶圆减薄 6.MOSFET在晶圆表面的形…

微信小程序如何使用decimal计算金额

第三方库地址&#xff1a;GitHub - MikeMcl/decimal.js: An arbitrary-precision Decimal type for JavaScript 之前都是api接口走后端计算&#xff0c;偶尔发现这个库也不错&#xff0c;计算简单&#xff0c;目前发现比较准确 上代码 导入js import Decimal from ../../uti…

安卓开发,底部导航栏

1、创建导航栏图标 使用系统自带的矢量图库文件&#xff0c;鼠标右键点击res->New->Vector Asset 修改 Name , Clip art 和 Color 再创建一个 同样的方法再创建四个按钮 2、添加百分比布局依赖 app\build.gradle.kts 中添加百分比布局依赖&#xff0c;并点击Sync Now …

前后端服务配置

1、安装虚拟机&#xff08;VirtualBox或者vmware&#xff09;&#xff0c;在虚拟机上配置centos(选择你需要的Linux版本)&#xff0c;配置如nginx服务器等 1.1 VMware 下载路径Sign In注册下载 1.2 VirtualBox 下载路径https://www.virtualbox.org/wiki/Downloads 2、配置服…

[vue3] Ref Reactive

【b站-【前端面试】Vue3 ref 与 reactive 区别】 Ref&#xff1a;Ref用于创建一个响应式的基本数据类型&#xff0c;比如数字、字符串等。它将普通的数据变成响应式数据&#xff0c;可以监听数据的变化。使用Ref时&#xff0c;我们可以通过.value来访问和修改数据的值。 Reac…

亲身经历!!解决fatal: unable to access ‘https://~.git/‘: Failed to connect to github.com ····

最近学着用GitBash,发现上来gitclone 就报错。由于我是纯小白&#xff0c;所以试了比较多次&#xff0c;终于成功了。 首先我试了一下关闭梯子&#xff0c;发现还是不行。上网搜&#xff0c;说是代理问题&#xff0c;可我也不知道啥叫代理&#xff0c;反正大概意思就是电脑连通…

TCP传输层协议

TCP 全称为 "传输控制协议(Transmission Control Protocol"). 人如其名, 要对数据的传 输进行一个详细的控制。 对于TCP的学习主要就是要知道TCP协议报头之中各个字段的作用 除了数据之外总共报头加起来是20个字节 16位源端口号与目的端口号 这是最容易理解的两…

12.10 LLM 操作能力的边界突破(WebGPT vs SayCan)

LLM 操作能力的边界突破(WebGPT vs SayCan) 关键词:WebGPT, SayCan, LLM 操作能力, LangChain Agents, 工具调用, 机器人任务规划 1. 从“思考”到“行动”:LLM 操作能力的革命 传统语言模型仅擅长文本生成,但 WebGPT 和 SayCan 的出现标志着 LLM 开始具备真实世界操作能…

正则引入store中的modules文件

正则引入store中的modules文件 // index.js import { createStore } from vuex;const modulesFiles require.context(./modules, true, /\.ts|js$/); const modules modulesFiles.keys().reduce((modules1, modulePath) > {const moduleName modulePath.replace(/^\.\/(.…

127,【3】 buuctf [NPUCTF2020]ReadlezPHP

进入靶场 吓我一跳 查看源码 点击 审计 <?php// 定义一个名为 HelloPhp 的类&#xff0c;该类可能用于执行与日期格式化相关的操作 class HelloPhp {// 定义一个公共属性 $a&#xff0c;用于存储日期格式化的模板public $a;// 定义一个公共属性 $b&#xff0c;用于存储…

如何在浏览器中搭建开源Web操作系统Puter的本地与远程环境

文章目录 前言1.关于Puter2.本地部署Puter3.Puter简单使用4. 安装内网穿透5.配置puter公网地址6. 配置固定公网地址 前言 嘿&#xff0c;小伙伴们&#xff01;是不是每次开机都要像打地鼠一样不停地点击各种网盘和应用程序的登录按钮&#xff0c;感觉超级麻烦&#xff1f;更让…

产品详情页中 品牌官网详情 对应后端的字段是 detail

文章目录 1、在这个Vue代码中&#xff0c;品牌官网详情 对应后端的字段是 detail2、品牌官网详情 功能相关的代码片段3、export const productSave (data: any) >4、ProductController5、ProductDto 类6、ProductApiService 1、在这个Vue代码中&#xff0c;品牌官网详情 对…

51单片机(国信长天)矩阵键盘的基本操作

在CT107D单片机综合训练平台上&#xff0c;首先将J5处的跳帽接到1~2引脚&#xff0c;使按键S4~S19按键组成4X4的矩阵键盘。在扫描按键的过程中&#xff0c;发现有按键触发信号后(不做去抖动)&#xff0c;待按键松开后&#xff0c;在数码管的第一位显示相应的数字:从左至右&…

Qt - 地图相关 —— 2、Qt调用百度在线地图功能示例全集,包含线路规划、地铁线路查询等(附源码)

效果:由于录制软件导致exe显示不正常,实际运行没有任何问题。 作者其他相关文章链接:           Qt - 地图相关 —— 1、加载百度在线地图(附源码)

VSCode + Continue 实现AI编程助理

安装VS Code 直接官网下载安装&#xff0c;反正是免费的。 安装VS插件Continue 直接在插件市场中搜索&#xff0c; Continue&#xff0c;第一个就是了。 配置Chat Model 点击Add Chat model后进行选择&#xff1a; 选择Ollama后&#xff0c;需要点击下面的config file : 由于…

机器学习之数学基础:线性代数、微积分、概率论 | PyTorch 深度学习实战

前一篇文章&#xff0c;使用线性回归模型逼近目标模型 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于 强化学习必修课&#xff1a;引领人工智能新时代【梗直哥瞿炜】 线性代数、微积分、概率论 …

BS架构(笔记整理)

楔子.基本概念 1.在网络架构中&#xff1a; 服务器通常是集中式计算资源&#xff0c;负责处理和存储数据&#xff1b;客户机是请求这些服务的终端设备&#xff0c;可能是个人电脑或移动设备&#xff1b;浏览器则是客户机上用来与服务器交互的工具&#xff0c;负责展示网页内容…

用Llama Factory单机多卡微调Qwen2.5时报torch.OutOfMemoryError: CUDA out of memory的解决办法

接着上一篇博客&#xff1a;在Ubuntu上用Llama Factory命令行微调Qwen2.5的简单过程_llamafactory 微调qwen 2.5-CSDN博客 如果需要微调比较大的模型&#xff0c;例如Qwen2.5-32B&#xff0c;那么在两个3090上可能不够用&#xff0c;这里我用A60004的服务器。但如果仿照上篇博…