SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现

SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现

目录

    • SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来(优化学习率,卷积核的数量,正则化系数);

2.运行环境Matlab2021及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;
以上运行环境Matlab2023及以上。
直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行主文件一键出图。
代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式私信回复SSA-TCN麻雀算法优化时间卷积神经网络时间序列预测未来Matlab实现。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test  = t_test' ;%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1}  = P_test( :, :, 1, i);
end%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法'MaxEpochs', 100, ...                  % 最大训练次数 'InitialLearnRate', 0.01, ...          % 初始学习率为0.01'LearnRateSchedule', 'piecewise', ...  % 学习率下降'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1'LearnRateDropPeriod', 70, ...         % 经过训练后 学习率为 0.01*0.1'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集'Verbose', 1);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/69411.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LVS + KeepAlived 配置HA集群的步骤

LVS KeepAlived 配置HA集群的步骤 (一)集群准备 准备vmvare linux虚拟主机4台,假设对外提供的VIP是192.168.174.110 主机IP备注LVS1192.168.174.101提供4层代理-主机LVS2192.168.174.102提供4层代理-备用Apache1192.168.174.201真实服务器…

智慧停车场解决方案(文末联系,领取整套资料,可做论文)

一、方案概述 本智慧停车场解决方案旨在通过硬件设备与软件系统的深度整合,实现停车场的智能化管理与服务,提升车主的停车体验,优化停车场运营效率。 二、硬件架构 硬件设备说明: 车牌识别摄像机:安装在停车场入口和…

DeepSeek开源多模态大模型Janus-Pro部署

DeepSeek多模态大模型部署 请自行根据电脑配置选择合适环境配置安装conda以及gitJanus 项目以及依赖安装运行cpu运行gpu运行 进入ui界面 请自行根据电脑配置选择合适 本人家用电脑为1060,因此部署的7B模型。配置高的可以考虑更大参数的模型。 环境配置 安装conda…

C#常用集合优缺点对比

先上结论&#xff1a; 在C#中&#xff0c;链表、一维数组、字典、List<T>和ArrayList是常见的数据集合类型&#xff0c;它们各有优缺点&#xff0c;适用于不同的场景。以下是它们的比较&#xff1a; 1. 一维数组 (T[]) 优点&#xff1a; 性能高&#xff1a;数组在内存中…

python-leetcode-删除有序数组中的重复项 II

80. 删除有序数组中的重复项 II - 力扣&#xff08;LeetCode&#xff09; class Solution:def removeDuplicates(self, nums: List[int]) -> int:if len(nums) < 2:return len(nums)j 2 # 允许最多两个相同的元素for i in range(2, len(nums)):if nums[i] ! nums[j - 2…

Render上后端部署Springboot + 前端Vue 问题及解决方案汇总

有一个 Vue 前端 和 Spring Boot 后端的动态网页游戏&#xff0c;当前在本地的 5173 端口和运行。你希望生成一个公开链接&#xff0c;让所有点击链接的人都能访问并玩这个游戏。由于游戏原本需要在本地执行 npm install 后才能启动&#xff0c;你现在想知道在部署时是选择 Ren…

力扣LeetCode: 80 删除有序数组中的重复项Ⅱ

题目&#xff1a; 给你一个有序数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使得出现次数超过两次的元素只出现两次 &#xff0c;返回删除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件…

redis之GEO 模块

文章目录 背景GeoHash 算法redis中的GeoHash 算法基本使用增加距离获取元素位置获取元素的 hash 值附近的元素 注意事项原理 背景 如果我们有需求需要存储地理坐标&#xff0c;为了满足高性能的矩形区域算法&#xff0c;数据表需要在经纬度坐标加上双向复合索引 (x, y)&#x…

51单片机俄罗斯方块清屏函数

/************************************************************************************************************** * 名称&#xff1a;LED_Clr * 功能&#xff1a;清屏 * 参数&#xff1a;NULL * 返回&#xff1a;NULL * 备注&#xff1a;temp数组为动态显示数据&#xff…

如何启用 Apache Rewrite 重写模块 ?

Apache 的 mod_rewrite 是最强大的 URL 操作模块之一。使用 mod_rewrite&#xff0c;您可以重定向和重写 url&#xff0c;这对于在您的网站上实现 seo 友好的 URL 结构特别有用。在本文中&#xff0c;我们将引导您了解如何在基于 Debian 和基于 RHEL 的系统上在 Apache 中启用 …

动手学图神经网络(9):利用图神经网络进行节点分类 WeightsBiases

利用图神经网络进行节点分类Weights&Biases 引言 在本篇博客中,将深入探讨如何使用图神经网络(GNNs)来完成节点分类任务。以 Cora 数据集为例,该数据集是一个引用网络,节点代表文档,推断每个文档的类别。同时,使用 Weights & Biases(W&B)来跟踪实验过程和…

“深入浅出”系列之C++:(19)C++14

C14的新拓展 自动类型推导&#xff08;auto&#xff09;的增强&#xff1a; C14在auto关键字的基础上进行了优化&#xff0c;使得类型推导更加智能。例如&#xff0c;可以使用auto来声明Lambda表达式的返回类型和参数类型&#xff0c;减少了繁琐的类型声明。 示例代码&#…

STM32单片机学习记录(2.9)

一、STM32 15.1 - FLASH闪存 1. FLASH简介 &#xff08;1&#xff09;STM32系列的FLASH包含程序存储器、系统存储器和选项字节三个部分&#xff0c;通过闪存存储器接口&#xff08;外设&#xff09;可以对程序存储器和选项字节进行擦除和编程&#xff1b; &#xff08;2&#x…

尚硅谷课程【笔记】——大数据之Zookeeper【二】

课程视频&#xff1a;【尚硅谷Zookeeper教程】 四、Zookeeper实战 4.1分布式安装部署 1. 集群规划 在Hadoop102、Hadoop103和Hadoop104三个节点上部署Zookeeper 2. 解压安装 1&#xff09;解压Zookeeper.tar.gz到指定目录 tar -zxvf zookeeper-3.7.2.tar.gz -C /opt/mod…

<论文>DeepSeek-R1:通过强化学习激励大语言模型的推理能力(深度思考)

一、摘要 本文跟大家来一起阅读DeepSeek团队发表于2025年1月的一篇论文《DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning | Papers With Code》&#xff0c;新鲜的DeepSeek-R1推理模型&#xff0c;作者规模属实庞大。如果你正在使用Deep…

rockmq配置出现的问题

环境注意事项 java要配置javahome-- java8&#xff0c;并且rockmq配置 根目录 解决方法&#xff1a; https://blog.csdn.net/weixin_46661658/article/details/133753627 如果执行第二步报错jar的路径 命令&#xff1a; start mqbroker.cmd -n 127.0.0.1:9876 autoCreateTop…

Spring Boot 3.4 中 MockMvcTester 的新特性解析

引言 在 Spring Boot 3.4 版本中&#xff0c;引入了一个全新的 MockMvcTester 类&#xff0c;使 MockMvc 测试可以直接支持 AssertJ 断言。本文将深入探讨这一新特性&#xff0c;分析它如何优化 MockMvc 测试并提升测试的可读性。 Spring MVC 示例 为了演示 MockMvcTester 的…

上传文件防木马函数

项目环境&#xff1a;TP6、TP5 问题&#xff1a;解决旧项目中上传上来的文件校验不严格。导致会有木马文件入侵的情况发生。除了上篇博文中提及的限制上传文件存储的目录不可执行php文件外。仍需在入口处严格检验上传文件的类型&#xff0c;排除php类可执行文件上传。 解决&a…

来自国外的实用软件 ,已接触所有限制!

今天我给大家带来了一款超棒的全自动抠图软件&#xff0c;真的是一个来自国外的宝藏工具&#xff01;而且好消息是&#xff0c;它现在完全解除了限制&#xff0c;可以无限畅快地使用了。 Teorex PhotoScissors 抠图软件 这款软件特别贴心&#xff0c;根本不需要安装&#xff0…

Spring Boot 的问题:“由于无须配置,报错时很难定位”,该怎么解决?

Spring Boot 的 "由于无须配置&#xff0c;报错时很难定位" 主要指的是&#xff1a; 传统 Spring 框架 需要大量 XML 或 Java 配置&#xff0c;开发者对应用的组件、Bean 加载情况有清晰的控制&#xff0c;出错时可以从配置入手排查。Spring Boot 采用自动配置&…