Noise Conditional Score Network

NCSN
p σ ( x ~ ∣ x ) : = N ( x ~ ; x , σ 2 I ) p_\sigma(\tilde{\mathrm{x}}|\mathrm{x}) := \mathcal{N}(\tilde{\mathrm{x}}; \mathrm{x}, \sigma^2\mathbf{I}) pσ(x~x):=N(x~;x,σ2I)
p σ ( x ~ ) : = ∫ p d a t a ( x ) p σ ( x ~ ∣ x ) d x p_\sigma(\mathrm{\tilde{x}}) := \int p_{data}(\mathrm{x})p_\sigma(\mathrm{\tilde{x}}|\mathrm{x})d\mathrm{x} pσ(x~):=pdata(x)pσ(x~x)dx
p d a t a ( x ) p_{data}(x) pdata(x)表示目标数据分布。 σ m i n = σ 1 < σ 2 < ⋅ ⋅ ⋅ < σ N = σ m a x \sigma_{\mathrm{min}}=\sigma_1<\sigma_2<\cdot\cdot\cdot<\sigma_N=\sigma_{\mathrm{max}} σmin=σ1<σ2<<σN=σmax
σ m i n \sigma_{\mathrm{min}} σmin足够小,以至于 p σ m i n ( x ) ≈ p d a t a ( x ) ) p_{\sigma_{\mathrm{min}}}(\mathrm{x}) \approx p_{data}(\mathrm{x})) pσmin(x)pdata(x)), σ m a x \sigma_{\mathrm{max}} σmax足够大,以至于 p σ m i n ( x ) ) ≈ N ( x ; 0 , σ m a x 2 I ) p_{\sigma_{\mathrm{min}}}(\mathrm{x})) \approx \mathcal{N}(\mathbf{x}; \mathbf{0}, \sigma^2_{\mathrm{max}}\mathbf{I}) pσmin(x))N(x;0,σmax2I)

θ ∗ = arg min ⁡ θ ∑ i = 1 N σ i 2 E x ∼ p d a t a ( x ) E x ~ ∼ p σ i ( x ~ ∣ x ) [ ∣ ∣ s θ ( x ~ , σ i ) − ▽ x ~ l o g p σ ~ ( x ~ ∣ x ) ∣ ∣ 2 2 ] \theta^{*} = \argmin_\theta \sum_{i=1}^N \sigma_i^2 \mathbb{E}_{\mathrm{x}\sim p_{data}(\mathrm{x})}\mathbb{E}_{\tilde{\mathrm{x}}\sim p_{\sigma_i}(\tilde{\mathrm{x}}|\mathrm{x})} \Big[ ||s_\theta(\tilde{\mathrm{x}}, \sigma_i) - \mathbf{\triangledown}_{\tilde{\mathrm{x}}}\mathrm{log}p_{\tilde{\sigma}}(\tilde{\mathrm{x}}|\mathrm{x})||^2_2\Big] θ=θargmini=1Nσi2Expdata(x)Ex~pσi(x~x)[∣∣sθ(x~,σi)x~logpσ~(x~x)22]

模型训练完毕后,执行M步Langevin MCMC采样:
x i m = x i m − 1 + ϵ i s θ ∗ ( x i m − 1 , σ i ) + 2 ϵ i z i m , m = 1 , 2 , ⋅ ⋅ ⋅ , M x_i^m = x_i^{m-1} + \epsilon_i s_{\theta^{*}}(x_i^{m-1}, \sigma_i) + \sqrt{2\epsilon_i}z_i^m, \quad m=1,2,\cdot\cdot\cdot, M xim=xim1+ϵisθ(xim1,σi)+2ϵi zim,m=1,2,,M
ϵ i > 0 \epsilon_i>0 ϵi>0为步长, z i m z_i^m zim是标准正态分布。上述采样过程重复 i = N , N − 1 , ⋅ ⋅ ⋅ , 1 i=N, N-1, \cdot\cdot\cdot, 1 i=N,N1,,1,也就是说对于每个noise level,执行N步,直至样本收敛至当前noise level的最佳位置。
x N 0 ∼ N ( x ∣ 0 , σ m a x 2 I ) , x i 0 = x i + 1 M w h e n i < N x_N^0 \sim \mathcal{N}(\mathrm{x}|0, \sigma^2_{max}\mathbf{I}), \ x_i^0 = x_{i+1}^M \mathrm{when}\ i < N xN0N(x∣0,σmax2I), xi0=xi+1Mwhen i<N

样例代码如下:

import torch
def langevin_sampling(score_network, noise_levels, num_steps, step_size, batch_size, device):# 初始化样本,从标准正态分布中采样x = torch.randn(batch_size, 3, 32, 32).to(device)# 多级噪声采样,从高噪声到低噪声逐步采样,最终得到逼近目标分布的样本for sigma in noise_levels:print(f"Sampling at noise level: {sigma}")# Langevin动力学迭代for _ in range(num_steps):# 计算分布函数梯度(由分数网络预测)with torch.no_grad():grad = score_network(x, sigma) # 输入当前样本和噪声水平# 梯度上升步x = x + step_size * grad# 添加随机噪声步noise = torch.randn_like(x) * (2 * step_size) ** 0.5x = x + noisereturn xclass DummyScoreNet(nn.Module):def forward(self, x, sigma):return -x / (sigma ** 2)device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
score_network = DummyScoreNet().to(device)noise_levels = [50.0, 25.0, 10.0, 5.0, 1.0]
num_steps = 50
step_size = 0.1
batch_size = 64samples = langevin_sampling(score_network,noise_levels,num_steps,step_size,batch_size,device)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/68020.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

jdk8 G1收集器怎么手动调优

在 JDK 8 中&#xff0c;手动调优 G1 垃圾收集器可以通过以下步骤和参数进行&#xff1a; 1. 启用 G1 垃圾收集器 要启用 G1 垃圾收集器&#xff0c;需要在 JVM 启动参数中添加以下选项&#xff1a; -XX:UseG1GC 这个参数告诉 JVM 使用 G1 作为垃圾收集器。 2. 设置堆内存…

Nginx通过设置自定义标记识别代理调用

Nginx通过设置自定义标记识别代理调用 业务场景 最近遇到一个业务场景&#xff0c;部署在云端服务器的一个平台&#xff0c;接口提供给多个现场调用&#xff0c;其中一个现场是通过nginx代理服务器代理转发到云服务器&#xff0c;另外一个现场则是直接通过云服务器接口进行调…

前端知识速记:POST和GET

前端知识速记&#xff1a;POST和GET请求的区别 一、GET请求概述 GET请求是一种用于获取服务器资源的请求方式。**使用GET请求时&#xff0c;数据通过URL传递&#xff0c;适合用于获取数据而不修改资源。**以下是GET请求的一些基本特征&#xff1a; 数据附在URL后面&#xff…

axios如何利用promise无痛刷新token

目录 需求 需求解析 实现思路 方法一&#xff1a; 方法二&#xff1a; 两种方法对比 实现 封装axios基本骨架 instance.interceptors.response.use拦截实现 问题和优化 如何防止多次刷新token 同时发起两个或以上的请求时&#xff0c;其他接口如何重试 最后完整代…

【DeepSeek系列】01 DeepSeek-V1 快速入门

1、DeepSeek简介 2024年底&#xff0c;DeepSeek 相继推出了其第一代推理大模型&#xff1a;DeepSeek-R1-Zero 和 DeepSeek-R1。 DeepSeek-R1-Zero 是一个通过大规模强化学习&#xff08;RL&#xff09;训练的模型&#xff0c;训练过程中没有使用监督微调&#xff08;SFT&…

基于LabVIEW的Modbus-RTU设备通信失败问题分析与解决

在使用 LabVIEW 通过 Modbus-RTU 协议与工业设备进行通信时&#xff0c;可能遇到无法正常发送或接收指令的问题。常见原因包括协议参数配置错误、硬件连接问题、数据帧格式不正确等。本文以某 RGBW 控制器调光失败为例&#xff0c;提出了一种通用的排查思路&#xff0c;帮助开发…

【初/高中生讲机器学习】0. 本专栏 “食用” 指南——写在一周年之际⭐

创建时间&#xff1a;2025-01-27 首发时间&#xff1a;2025-01-29 最后编辑时间&#xff1a;2025-01-29 作者&#xff1a;Geeker_LStar 你好呀~这里是 Geeker_LStar 的人工智能学习专栏&#xff0c;很高兴遇见你~ 我是 Geeker_LStar&#xff0c;一名高一学生&#xff0c;热爱计…

密云生活的初体验

【】在《岁末随笔之碎碎念》里&#xff0c;我通告了自己搬新家的事情。乙巳年开始&#xff0c;我慢慢与大家分享自己买房装修以及在新家的居住体验等情况。 跳过买房装修的内容&#xff0c;今天先说说这三个月的生活体验。 【白河】 潮白河是海河水系五大河之一&#xff0c;贯穿…

系统通解:超多视角理解

在科学研究和工程应用中&#xff0c;我们常常面临各种复杂系统&#xff0c;需要精确描述其行为和变化规律。从物理世界的运动现象&#xff0c;到化学反应的进程&#xff0c;再到材料在受力时的响应&#xff0c;这些系统的行为往往由一系列数学方程来刻画。通解&#xff0c;正是…

Python爬虫:1药城店铺爬虫(完整代码)

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…

openwebui入门

1 简介 ‌Open WebUI‌&#xff08;网址是openwebui.com&#xff09;是一个高度可扩展、功能强大且用户友好的自托管Web用户界面&#xff0c;专为完全离线操作设计&#xff0c;编程语言是python。它支持对接Ollama和OpenAI兼容的API的大模型。‌ Open WebUI‌在架构上是一种中…

Day36-【13003】短文,数组的行主序方式,矩阵的压缩存储,对称、三角、稀疏矩阵和三元组线性表,广义表求长度、深度、表头、表尾等

文章目录 本次课程内容第四章 数组、广义表和串第一节 数组及广义表数组的基本操作数组的顺序存储方式-借用矩阵行列式概念二维数组C语言对应的函数-通常行主序方式 矩阵的压缩存储对称矩阵和三角矩阵压缩存储后&#xff0c;采用不同的映射函数稀疏矩阵-可以构成三元组线性表三…

Android原生开发入门

1. 资源地址 Android官方教程Android参考手册 2. 必看基础模块 应用基础知识View 绑定 &#xff1a;绑定相当于Qt中的ui文件生成界面代码的机制&#xff0c;Qt中的ucc会自动将ui文件编译成ui_xxxx.h文件&#xff0c;Android开发中也一样。 Android中自动生成的代码在&#x…

3-Not_only_base/2018网鼎杯

3-Not_only_base 打开code MCJIJSGKPZZYXZXRMUW3YZG3ZZG3HQHCUS 分析&#xff1a; 首先看题知道解密过程中肯定有base解密。 知识点1&#xff1a; Base64字符集&#xff1a; 包含大小写字母&#xff08;A-Z、a-z&#xff09;、数字&#xff08;0-9&#xff09;以及两个特殊字…

deepseek、qwen等多种模型本地化部署

想要在本地部署deepseek、qwen等模型其实很简单,快跟着小编一起部署吧 1 环境搭建 1.1下载安装环境 首先我们需要搭建一个环境ollama,下载地址如下 :Ollama 点击Download 根据自己电脑的系统选择对应版本下载即可 1.2 安装环境(window为例) 可以直接点击安装包进行安…

02/06 软件设计模式

目录 一.创建型模式 抽象工厂 Abstract Factory 构建器 Builder 工厂方法 Factory Method 原型 Prototype 单例模式 Singleton 二.结构型模式 适配器模式 Adapter 桥接模式 Bridge 组合模式 Composite 装饰者模式 Decorator 外观模式 Facade 享元模式 Flyw…

Idea ⽆ Maven 选项

Idea ⽆ Maven 选项 1. 在 Idea 项⽬上右键2. 选中 Maven 选项 如果在创建 Spring/Spring Boot 项⽬时&#xff0c;Idea 右侧没有 Maven 选项&#xff0c;如下图所示&#xff1a; 此时可以使⽤以下⽅式解决。 1. 在 Idea 项⽬上右键 2. 选中 Maven 选项 选中 Maven 之后&#…

企业百科和品牌百科创建技巧

很多人比较困惑&#xff0c;创建百科词条需要注意哪些事情&#xff1f;为什么参考提交了权威新闻参考资料还是没有通过&#xff0c;下面小马识途营销顾问就为大家解答疑惑&#xff1a; 1、品牌词以及企业词提交 1&#xff09;如果没有词条&#xff0c;我们可以通过平台提供的急…

用Deepseek做EXCLE文件对比

背景是我想对比两个PO系统里的一个消息映射&#xff0c;EDI接口的mapping有多复杂懂的都懂&#xff0c;它还不支持跨系统版本对比&#xff0c;所以我费半天劲装NWDS&#xff0c;导出MM到excle&#xff0c;然后问题来了&#xff0c;我需要对比两个excel文件里的内容&#xff0c;…

Agent开发注意事项

这里写自定义目录标题 llm应用开发什么是Agent?Agent1&#xff1a;工作流Agent2:自主AgentLLM如何拥有自主规划能力&#xff1f; Tool 参考&#xff1a; llm应用开发 llm工程师需要具备以下能力&#xff1a; [] 软件工程技能&#xff1a;将各个组件组装在一起 [] 算法能力&am…