【初/高中生讲机器学习】0. 本专栏 “食用” 指南——写在一周年之际⭐

创建时间:2025-01-27
首发时间:2025-01-29
最后编辑时间:2025-01-29
作者:Geeker_LStar

你好呀~这里是 Geeker_LStar 的人工智能学习专栏,很高兴遇见你~
我是 Geeker_LStar,一名高一学生,热爱计算机和数学,我们一起加油~!
⭐(●’◡’●) ⭐
那就让我们开始吧!

好耶!!(撒花)

这个专栏一岁啦!!从初三寒假写到高一寒假,它见证了我一年的成长。

一周年之际,也算是完结之际,这篇文章是对整个专栏的介绍~!

关于这个专栏的 2W1H

  • What:这个专栏是什么?
  • Why:为什么我会写这个专栏?
  • How:如何使用这个专栏?
  • Passion Is All You Need.

What:这个专栏是什么?

正如标题中【】框起来的部分,这是一个由高中生写的机器学习专栏。
这个专栏从 2024.01.29 开始更新,这篇介绍写于 2025.01.29,恰好是一周年,也恰好是专栏(第一次)完结的时间。

这个专栏的宗旨是 “用最具象的方式讲最抽象的东西”。(此处的 “抽象” 有两层意思啊不是(

专栏中每一篇文章我都写得很认真,每一篇的思路链条都经过了一次次地修改和完善。除了对算法和公式的讲解,我也会加入自己在学习这个算法的时候遇到的问题,以及我更多的思考。
我努力把每个算法背后的 motivation 展现出来,在我看来,这是一个算法最核心的东西。理解了 motivation,数学推导也就没有那么难了。

这是专栏中所有文章的合集:
【机器学习】全系列合集,戳这里!(更新中)

\begin 注意:
序号 3-15 的文章是初三(主要是初三寒假)的时候写的,可能会出现一些漏洞(理解 & 符号使用 & 公式,等等很多方面),如果觉得有问题欢迎找我!!! 这部分的文章会在后面的一年中进行更多的打磨和修改!
序号 15 往后的文章主要是高一上学期写的,相对来讲会更专业一些~后面也会进行一些打磨!
\end 注意
(噗哈哈哈这个 \begin 和 \end 不是渲染的问题,我就是这么打的))

Why:为什么我会写这个专栏?

——因为我觉得现有的机器学习资料对初学者太不友好了😭。
“默认” 的数学基础、堆在一起还缺乏解释的公式,无处不在的 “显然” 和 “省略”…

这真的会让人爆炸的🤯,我初学机器学习的那两个月几乎每天都处在这种 “爆炸” 当中。
所以我想写一点对初学者,对很多和我一样的初学者友好的东西,说得再直白点就是让人能看懂的东西。包括但不限于轻松的语言风格,丰富具体的例子,包含详细解释的数学推导,等等。

这个想法在当时可以说是一种冲动,这种冲动大约持续了一个月,随后则成为了一种习惯——在后来的十一个月当中。

That’s all.

接着,我们来说点执行层面的事情(???bruh 这个词为什么这么熟悉)——这个专栏应该怎么看?以什么样的顺序看?每一篇文章有没有具体需要注意的点?

How:如何使用这个专栏?

好呀~那我们就来聊聊具体应该如何使用这个专栏吧!

首先,在深入学习每一个算法之前,你需要对机器学习的一些基础知识有一个大致的了解。

嗯…这个专栏的第一、二篇文章一直没有写,其实它们就是给 “机器学习概述” 留的位置啦!等我写好了会放在这里的!
不过其实,虽然现在还没写好,但是写过的一些内容也涵盖了机器学习的基础知识,如下啦~

用于参数估计(模型优化)的两大方法:
12. 似然函数和极大似然估计:原理、应用与代码实现
15. EM 算法一万字详解!一起来学!

一些可以评估模型性能的指标:
6. 分类算法中常用的模型评价指标有哪些?here!
11. 回归算法中常用的模型评价指标有哪些?here!

确定模型超参数的方法:
7. 交叉验证是什么?有哪些?怎么实现?来看!

同时,还可以简单了解一下熵的概念,有助于更好地理解后面具体算法中的内容:
22. 信息论基础:信息熵、交叉熵、相对熵

okay!把这些看完之后,你对机器学习应该已经有了一个不错的了解!接下来我们可以进入具体算法的研究了…

先从监督学习开始吧!

不妨让线性回归成为第一个算法,这估计是最简单的一个算法了:
10. 新手向,线性回归算法原理一篇吃透!

接着我们可以学习一下 KNN,它是最简单的分类算法:
8. KNN 算法原理 & 实践一篇讲清!
里面 KD-tree 相关的部分如果看不懂可以先跳过。

接下来可以看一看朴素贝叶斯,核心公式只有一个,相对来讲是比较简单的:
5. 从概率到朴素贝叶斯算法,一篇带你看明白!

嗷,后面的部分会变得稍微难一些。

逻辑回归是用得很广的分类模型,公式比前面几个稍多一些,但难度不大:
14. 手撕公式,一篇带你理解逻辑回归!

从逻辑回归出发,我们可以拓展到更为一般化的最大熵原理:
23. 最大熵模型详解+推导来啦!解决 why sigmoid!

然后我们来看一个非常经典的分类模型,也是我学的第一个模型——支持向量机:
3. 支持向量机(SVM)一万字详解!超全超详细超易懂!
注意,支持向量机对偶问题那部分很难,可以 jump jump jump()

ok 呀,接下来我们进入树模型的部分,树模型是机器学习中很重要的组成部分。
first 是基础的决策树,比较直观,公式不难:
13. 决策树算法一万字详解!一篇带你看懂!

决策树之后就是绕不开的集成学习。这里可以先了解一下偏差—方差分解,理解集成学习出现的原因:
24. 从偏差—方差分解到集成学习!包全的!
其中的很多数学细节可以跳过。

然后可以分别学习 Bagging 和 Boosting。建议先学 Bagging,因为数学部分比较简单:
28. 集成学习之 Bagging & 随机森林!

然后是 Boosting:
25. AdaBoost 算法详解+推导来啦!
26. 梯度提升树 GBDT 超详细讲解!

oh,接下来就是更为进阶的主题了——概率图模型。
概率图模型可以分为贝叶斯网络和马尔可夫网络两个部分去学,建议先从贝叶斯网络开始:
27. 贝叶斯网络详解!超!系!统!
这个里面也写了概率图模型的介绍。

贝叶斯网络的一大实例是经典的标注算法隐马尔可夫模型:
20. 隐马尔可夫模型好难?看过来!(上篇)
21. 隐马尔可夫模型好难?看过来!(下篇)

学完贝叶斯网络,再来看看它的另一半——马尔可夫网络:
29. 马尔可夫随机场 2w 字详解!超!系!统!

条件随机场是马尔可夫网络的实例,也是经典的标注算法之一:
30. 理解条件随机场最清晰的思路!(上篇)
31. 理解条件随机场最清晰的思路!(下篇)

好耶!!学完这些,基本的监督学习算法你就已经全都 get 到啦!!!
接下来我们进入无监督学习吧!

无监督学习的算法相对少一些。
我们可以先了解一下几种经典的聚类算法,聚类比较简单,不涉及太多的数学:
19. 各种经典聚类算法,一篇带你过完!(上)

接下来我们来学习一个经典的降维算法——主成分分析。
降维算法的数学普遍比较复杂,如果觉得太难,可以适当跳过一些数学推导:
16. 线代小白也能看懂的矩阵奇异值分解!
17. 讲人话的主成分分析,它来了!(上篇)
18. 讲人话的主成分分析,它来了!(下篇)

无监督学习的基本算法其实也就这两个啦~

恭喜你!!!如果你看完了以上所有文章,你已经成功入门了机器学习!!

(再次撒花!)

嘿嘿~ 那对这个专栏的介绍就到这里啦~ 欢迎帮我宣传呀嘿嘿!!祝学习顺利!!❤~

Passion Is All You Need.

最后,这句话送给你,也送给我。

这篇文章介绍了整个专栏⭐。
欢迎三连!!一起加油!🎇
——Geeker_LStar

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/68013.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

密云生活的初体验

【】在《岁末随笔之碎碎念》里,我通告了自己搬新家的事情。乙巳年开始,我慢慢与大家分享自己买房装修以及在新家的居住体验等情况。 跳过买房装修的内容,今天先说说这三个月的生活体验。 【白河】 潮白河是海河水系五大河之一,贯穿…

系统通解:超多视角理解

在科学研究和工程应用中,我们常常面临各种复杂系统,需要精确描述其行为和变化规律。从物理世界的运动现象,到化学反应的进程,再到材料在受力时的响应,这些系统的行为往往由一系列数学方程来刻画。通解,正是…

Python爬虫:1药城店铺爬虫(完整代码)

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…

openwebui入门

1 简介 ‌Open WebUI‌(网址是openwebui.com)是一个高度可扩展、功能强大且用户友好的自托管Web用户界面,专为完全离线操作设计,编程语言是python。它支持对接Ollama和OpenAI兼容的API的大模型。‌ Open WebUI‌在架构上是一种中…

Day36-【13003】短文,数组的行主序方式,矩阵的压缩存储,对称、三角、稀疏矩阵和三元组线性表,广义表求长度、深度、表头、表尾等

文章目录 本次课程内容第四章 数组、广义表和串第一节 数组及广义表数组的基本操作数组的顺序存储方式-借用矩阵行列式概念二维数组C语言对应的函数-通常行主序方式 矩阵的压缩存储对称矩阵和三角矩阵压缩存储后,采用不同的映射函数稀疏矩阵-可以构成三元组线性表三…

Android原生开发入门

1. 资源地址 Android官方教程Android参考手册 2. 必看基础模块 应用基础知识View 绑定 :绑定相当于Qt中的ui文件生成界面代码的机制,Qt中的ucc会自动将ui文件编译成ui_xxxx.h文件,Android开发中也一样。 Android中自动生成的代码在&#x…

3-Not_only_base/2018网鼎杯

3-Not_only_base 打开code MCJIJSGKPZZYXZXRMUW3YZG3ZZG3HQHCUS 分析: 首先看题知道解密过程中肯定有base解密。 知识点1: Base64字符集: 包含大小写字母(A-Z、a-z)、数字(0-9)以及两个特殊字…

deepseek、qwen等多种模型本地化部署

想要在本地部署deepseek、qwen等模型其实很简单,快跟着小编一起部署吧 1 环境搭建 1.1下载安装环境 首先我们需要搭建一个环境ollama,下载地址如下 :Ollama 点击Download 根据自己电脑的系统选择对应版本下载即可 1.2 安装环境(window为例) 可以直接点击安装包进行安…

02/06 软件设计模式

目录 一.创建型模式 抽象工厂 Abstract Factory 构建器 Builder 工厂方法 Factory Method 原型 Prototype 单例模式 Singleton 二.结构型模式 适配器模式 Adapter 桥接模式 Bridge 组合模式 Composite 装饰者模式 Decorator 外观模式 Facade 享元模式 Flyw…

Idea ⽆ Maven 选项

Idea ⽆ Maven 选项 1. 在 Idea 项⽬上右键2. 选中 Maven 选项 如果在创建 Spring/Spring Boot 项⽬时,Idea 右侧没有 Maven 选项,如下图所示: 此时可以使⽤以下⽅式解决。 1. 在 Idea 项⽬上右键 2. 选中 Maven 选项 选中 Maven 之后&#…

企业百科和品牌百科创建技巧

很多人比较困惑,创建百科词条需要注意哪些事情?为什么参考提交了权威新闻参考资料还是没有通过,下面小马识途营销顾问就为大家解答疑惑: 1、品牌词以及企业词提交 1)如果没有词条,我们可以通过平台提供的急…

用Deepseek做EXCLE文件对比

背景是我想对比两个PO系统里的一个消息映射,EDI接口的mapping有多复杂懂的都懂,它还不支持跨系统版本对比,所以我费半天劲装NWDS,导出MM到excle,然后问题来了,我需要对比两个excel文件里的内容,…

Agent开发注意事项

这里写自定义目录标题 llm应用开发什么是Agent?Agent1:工作流Agent2:自主AgentLLM如何拥有自主规划能力? Tool 参考: llm应用开发 llm工程师需要具备以下能力: [] 软件工程技能:将各个组件组装在一起 [] 算法能力&am…

OpenCV:图像轮廓

目录 简述 1. 什么是图像轮廓? 2. 查找图像轮廓 2.1 接口定义 2.2 参数说明 2.3 代码示例 2.4 运行结果 3. 绘制图像轮廓 3.1 接口定义 3.2 参数说明 3.3 代码示例 3.4 运行结果 4. 计算轮廓周长 5. 计算轮廓面积 6. 示例:计算图像轮廓的面…

在Mac mini M4上部署DeepSeek R1本地大模型

在Mac mini M4上部署DeepSeek R1本地大模型 安装ollama 本地部署,我们可以通过Ollama来进行安装 Ollama 官方版:【点击前往】 Web UI 控制端【点击安装】 如何在MacOS上更换Ollama的模型位置 默认安装时,OLLAMA_MODELS 位置在"~/.o…

CVPR | CNN融合注意力机制,芜湖起飞!

**标题:**On the Integration of Self-Attention and Convolution **论文链接:**https://arxiv.org/pdf/2111.14556 **代码链接:**https://github.com/LeapLabTHU/ACmix 创新点 1. 揭示卷积和自注意力的内在联系 文章通过重新分解卷积和自…

module ‘matplotlib.cm‘ has no attribute ‘get_cmap‘

目录 解决方法1: 解决方法2,新版api改了: module matplotlib.cm has no attribute get_cmap 报错代码: cmap matplotlib.cm.get_cmap(Oranges) 解决方法1: pip install matplotlib3.7.3 解决方法2,新版…

使用Nuxt.js实现服务端渲染(SSR):提升SEO与性能的完整指南

使用Nuxt.js实现服务端渲染(SSR):提升SEO与性能的完整指南 使用Nuxt.js实现服务端渲染(SSR):提升SEO与性能的完整指南1. 服务端渲染(SSR)核心概念1.1 CSR vs SSR vs SSG1.2 SSR工作原…

解释 Java 中的反射机制和动态代理的原理?

反射机制是Java语言的一个特性,它允许程序在运行时检查和操作类、方法、字段等。 通过反射,我们可以在运行时获取类的信息,创建对象,调用方法和访问字段,即使这些信息在编译时是未知的。 反射的基本用法 import jav…

http状态码:504 Gateway Timeout(网关超时)的原有以及排查问题的思路

504 Gateway Timeout(网关超时) 是一种常见的HTTP错误状态码,表示服务器作为网关或代理时,未能及时从上游服务器收到响应。以下是它的原因和排查问题的思路: 1. 504错误的含义 定义:服务器作为网关或代理时…