Airflow:深入理解Apache Airflow Task

Apache Airflow是一个开源工作流管理平台,支持以编程方式编写、调度和监控工作流。由于其灵活性、可扩展性和强大的社区支持,它已迅速成为编排复杂数据管道的首选工具。在这篇博文中,我们将深入研究Apache Airflow 中的任务概念,探索不同类型的任务,如何创建它们,以及各种最佳实践。
在这里插入图片描述

Airflow任务介绍

任务是Airflow工作流(也称为有向无环图或DAG)中最小的工作单元。任务表示单个操作、功能或计算,是更大工作流的一部分。在数据管道上下文中,任务可能包括数据提取、转换、加载或任何其他数据处理操作。

任务类型

Apache Airflow中的三种基本任务类型:操作员,传感器和taskflow装饰任务。

  1. Operators

Operator是预定义的任务模板,可以很容易地组合起来创建大多数dag。它们代表单一的工作或操作单元,并且气流具有广泛的内置Operator,以适应各种应用场景。

  1. Sensors

Sensor是Operator的一个独特子类,它专注于在继续工作流程之前等待外部事件的发生。传感器对于确保在任务开始执行之前满足某些条件是必不可少的。

  1. TaskFlow-decorated任务

TaskFlow是在Airflow 2.0中引入的新特性,它支持使用@task装饰器将Python函数打包为任务,从而简化了创建自定义任务的过程。这种方法允许你在dag内定义内联任务,从而提高了代码的可重用性和可读性。

创建任务

要创建任务,请实例化操作符并提供所需的参数。下面是使用PythonOperator创建任务的示例:

from airflow import DAG 
from airflow.operators.python import PythonOperator 
from datetime import datetime def my_function(): print("Hello, Airflow!") dag = DAG( 'my_dag', start_date=datetime(2023, 4, 5), schedule_interval='@daily' ) task = PythonOperator( task_id='my_task', python_callable=my_function, dag=dag ) 

my_function 是Python普通函数,通过python_callable参数赋值,把python函数转为Airflow任务。

任务依赖关系

DAG中的任务可以具有依赖关系,这些依赖关系定义了它们执行的顺序。要设置依赖关系,可以使用set_upstream()和set_downstream()方法或bitshift操作符(<<和>>):

task_a = DummyOperator(task_id='task_a', dag=dag) 
task_b = DummyOperator(task_id='task_b', dag=dag) task_a.set_downstream(task_b) 
# or 
task_a >> task_b 

任务重试和失败处理

Airflow支持配置重试次数和任务重试之间的延迟。这可以在创建任务时使用retries和retry_delay参数来完成:

from datetime import timedelta task = PythonOperator( task_id='my_task', python_callable=my_function, retries=3, retry_delay=timedelta(minutes=5), dag=dag 
) 

任务最佳实践

以下是一些在Apache Airflow中处理任务的最佳实践:

  1. 保持任务幂等:确保任务在给定相同输入的情况下产生相同的输出,而不管它们执行了多少次。
  2. 使任务更小、更集中:将复杂的任务分解成更小、更易于管理的单元。
  3. 使用任务模板和宏:利用Jinja模板和Airflow宏使任务更具动态性和可重用性。
  4. 监控和记录任务性能:利用Airflow的内置监控和记录功能来密切关注任务性能并解决任何问题。
  5. 定义任务超时时间:为您的任务设置适当的超时时间,以防止它们无限期运行并消耗资源。
  6. 在任务之间使用XCom进行通信:Airflow的XCom功能允许任务交换少量数据。将此功能用于任务间通信,而不是依赖于外部存储或全局变量。
  7. 测试你的任务:编写任务单元测试,以确保它们按预期工作,并在开发过程的早期发现任何问题。
  8. 编写任务文档:给任务添加清晰简洁的文档,解释它们做什么,以及它们的行为或配置的任何重要细节。

最后总结

任务是Apache Airflow中的基本构建块,使您能够通过组合各种Operator和配置来创建强大而灵活的工作流。通过遵循本文中概述的最佳实践并利用Airflow提供的众多特性,你可以创建高效、可维护且可靠的数据管道。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/67733.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开发环境搭建-4:WSL 配置 docker 运行环境

在 WSL 环境中构建&#xff1a;WSL2 (2.3.26.0) Oracle Linux 8.7 官方镜像 基本概念说明 容器技术 利用 Linux 系统的 文件系统&#xff08;UnionFS&#xff09;、命名空间&#xff08;namespace&#xff09;、权限管理&#xff08;cgroup&#xff09;&#xff0c;虚拟出一…

JavaScript 基础 - 7

关于JS函数部分的学习和一个案例的练习 1 函数封装 抽取相同部分代码封装 优点 提高代码复用性&#xff1a;封装好的函数可以在多个地方被重复调用&#xff0c;避免了重复编写相同的代码。例如&#xff0c;编写一个计算两个数之和的函数&#xff0c;在多个不同的计算场景中都…

详解u3d之AssetBundle

一.AssetBundle的概念 “AssetBundle”可以指两种不同但相关的东西。 1.1 AssetBundle指的是u3d在磁盘上生成的存放资源的目录 目录包含两种类型文件(下文简称AB包)&#xff1a; 一个序列化文件&#xff0c;其中包含分解为各个对象并写入此单个文件的资源。资源文件&#x…

微信登录模块封装

文章目录 1.资质申请2.combinations-wx-login-starter1.目录结构2.pom.xml 引入okhttp依赖3.WxLoginProperties.java 属性配置4.WxLoginUtil.java 后端通过 code 获取 access_token的工具类5.WxLoginAutoConfiguration.java 自动配置类6.spring.factories 激活自动配置类 3.com…

DeepSeek 介绍及对外国的影响

DeepSeek 简介 DeepSeek&#xff08;深度求索&#xff09;是一家专注实现 AGI&#xff08;人工通用智能&#xff09;的中国科技公司&#xff0c;2023 年成立&#xff0c;总部位于杭州&#xff0c;在北京设有研发中心。与多数聚焦具体应用&#xff08;如人脸识别、语音助手&…

MySQL数据库(二)- SQL

目录 ​编辑 一 DDL (一 数据库操作 1 查询-数据库&#xff08;所有/当前&#xff09; 2 创建-数据库 3 删除-数据库 4 使用-数据库 (二 表操作 1 创建-表结构 2 查询-所有表结构名称 3 查询-表结构内容 4 查询-建表语句 5 添加-字段名数据类型 6 修改-字段数据类…

ARM嵌入式学习--第十天(UART)

--UART介绍 UART(Universal Asynchonous Receiver and Transmitter)通用异步接收器&#xff0c;是一种通用串行数据总线&#xff0c;用于异步通信。该总线双向通信&#xff0c;可以实现全双工传输和接收。在嵌入式设计中&#xff0c;UART用来与PC进行通信&#xff0c;包括与监控…

面试题-消失的数字-异或

消失的数字 数组nums包含从0到n的所有整数&#xff0c;但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在 O(n) 时间内完成吗&#xff1f; 示例&#xff1a; 输入&#xff1a;[3,0,1] 输出&#xff1a;2 int missingNumber(int* nums, int numsSize) {}分析 本题对…

数据结构与算法之栈: LeetCode 1685. 有序数组中差绝对值之和 (Ts版)

有序数组中差绝对值之和 https://leetcode.cn/problems/sum-of-absolute-differences-in-a-sorted-array/description/ 描述 给你一个 非递减 有序整数数组 nums 请你建立并返回一个整数数组 result&#xff0c;它跟 nums 长度相同&#xff0c;且result[i] 等于 nums[i] 与数…

笔试-排列组合

应用 一个长度为[1, 50]、元素都是字符串的非空数组&#xff0c;每个字符串的长度为[1, 30]&#xff0c;代表非负整数&#xff0c;元素可以以“0”开头。例如&#xff1a;[“13”, “045”&#xff0c;“09”&#xff0c;“56”]。 将所有字符串排列组合&#xff0c;拼起来组成…

Python3 OS模块中的文件/目录方法说明十七

一. 简介 前面文章简单学习了 Python3 中 OS模块中的文件/目录的部分函数。 本文继续来学习 OS 模块中文件、目录的操作方法&#xff1a;os.walk() 方法、os.write()方法 二. Python3 OS模块中的文件/目录方法 1. os.walk() 方法 os.walk() 方法用于生成目录树中的文件名&a…

[Java]抽象类

1. 什么是抽象类&#xff1f; 1.1 定义&#xff1a; 抽象类是一个不能实例化的类&#xff0c;它是用来作为其他类的基类的。抽象类可以包含抽象方法和非抽象方法。抽象方法没有方法体&#xff0c;子类必须重写这些方法并提供具体的实现。抽象类可以有构造方法、成员变量、静态…

css三角图标

案例三角&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><s…

跨越通信障碍:深入了解ZeroMQ的魅力

在复杂的分布式系统开发中&#xff0c;进程间通信就像一座桥梁&#xff0c;连接着各个独立运行的进程&#xff0c;让它们能够协同工作。然而&#xff0c;传统的通信方式往往伴随着复杂的设置、高昂的性能开销以及有限的灵活性&#xff0c;成为了开发者们前进道路上的 “绊脚石”…

深入解析 COUNT(DISTINCT) OVER(ORDER BY):原理、问题与高效替代方案

目录 一、累计去重需求场景 二、COUNT(DISTINCT) OVER(ORDER BY) 语法解析 2.1 基础语法 2.2 执行原理 三、三大核心问题分析

线性数据结构:单向链表

放弃眼高手低&#xff0c;你真正投入学习&#xff0c;会因为找到一个新方法产生成就感&#xff0c;学习不仅是片面的记单词、学高数......只要是提升自己的过程&#xff0c;探索到了未知&#xff0c;就是学习。 目录 一.链表的理解 二.链表的分类&#xff08;重点理解&#xf…

基于PyQt5打造的实用工具——PDF文件加图片水印,可调大小位置,可批量处理!

01 项目简介 &#xff08;1&#xff09;项目背景 随着PDF文件在信息交流中的广泛应用&#xff0c;用户对图片水印的添加提出了更高要求&#xff0c;既要美观&#xff0c;又需高效处理批量文件。现有工具难以实现精确调整和快速批量操作&#xff0c;操作繁琐且效果不理想。本项…

MCU内部ADC模块误差如何校准

本文章是笔者整理的备忘笔记。希望在帮助自己温习避免遗忘的同时&#xff0c;也能帮助其他需要参考的朋友。如有谬误&#xff0c;欢迎大家进行指正。 一、ADC误差校准引言 MCU 片内 ADC 模块的误差总包括了 5 个静态参数 (静态失调&#xff0c;增益误差&#xff0c;微分非线性…

嵌入式硬件篇---CPUGPUTPU

文章目录 第一部分&#xff1a;处理器CPU&#xff08;中央处理器&#xff09;1.通用性2.核心数3.缓存4.指令集5.功耗和发热 GPU&#xff08;图形处理器&#xff09;1.并行处理2.核心数量3.内存带宽4.专门的应用 TPU&#xff08;张量处理单元&#xff09;1.为深度学习定制2.低精…

03-机器学习-数据获取

一、流行机器学习数据集 主流机器学习数据集汇总 数据集名称描述来源MNIST手写数字图像数据集&#xff0c;由美国人口普查局员工书写。MNIST官网ImageNet包含数百万张图像&#xff0c;用于图像分类和目标检测。ImageNet官网AudioSet包含YouTube音频片段&#xff0c;用于声音分…