在ubuntu下一键安装 Open WebUI

该脚本用于自动化安装 Open WebUI,并支持以下功能:

可选跳过 Ollama 安装:通过 --no-ollama 参数跳过 Ollama 的安装。自动清理旧目录:如果安装目录 (~/open-webui) 已存在,脚本会自动删除旧目录并重新安装。完整的依赖安装:包括 Python、Node.js、npm、Git 等依赖的安装。自动配置系统服务:将 Open WebUI 配置为系统服务,并设置开机自启。防火墙配置:自动开放端口 8080,以便访问 Open WebUI。

更新后的脚本:
bash
复制


#!/bin/bash# 遇到错误时退出脚本
set -e# 检查并设置 Conda
setup_conda() {# 如果 conda 命令不可用,但目录存在if [ -d "$HOME/miniconda" ]; thenecho "检测到已存在的 Miniconda 安装,正在配置..."# 添加到 PATHexport PATH="$HOME/miniconda/bin:$PATH"# 初始化 bash 和 condaif [ ! -f "$HOME/.bashrc" ] || ! grep -q "conda initialize" "$HOME/.bashrc"; then"$HOME/miniconda/bin/conda" init bashsource "$HOME/.bashrc"fielseecho "正在安装 Miniconda..."# 下载 Miniconda 安装脚本wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh# 安装 Minicondabash miniconda.sh -b -p "$HOME/miniconda"# 初始化 bash 和 condaexport PATH="$HOME/miniconda/bin:$PATH""$HOME/miniconda/bin/conda" init bashsource "$HOME/.bashrc"fi
}# 生成随机密钥的函数
generate_secret_key() {python3 -c 'import secrets; print(secrets.token_urlsafe(32))'
}# 显示脚本用法
usage() {echo "用法: $0 [--no-ollama] [--no-download]"echo "  --no-ollama: 跳过 Ollama 安装"echo "  --no-download: 跳过下载 Open WebUI 代码(如果已经下载)"exit 1
}# 解析参数
SKIP_OLLAMA=false
SKIP_DOWNLOAD=false
while [[ $# -gt 0 ]]; docase "$1" in--no-ollama)SKIP_OLLAMA=trueshift;;--no-download)SKIP_DOWNLOAD=trueshift;;*)usage;;esac
done# 检查 sudo 权限
check_sudo() {if ! sudo -n true 2>/dev/null; thenecho "需要 sudo 权限来安装系统依赖。"echo "请确保你有 sudo 权限,或者以 root 用户运行此脚本。"exit 1fi
}echo "开始安装 Open WebUI..."# 检查 sudo 权限
check_sudo# 更新系统包
echo "更新系统包..."
if command -v apt-get &> /dev/null; thensudo -n apt-get updatesudo -n apt-get upgrade -y
fi# 安装基本依赖
echo "安装基本依赖..."
sudo -n apt-get install -y python3 python3-pip git curl python3-venv build-essential || { echo "安装依赖失败"; exit 1; }# 安装 Node.js
echo "安装 Node.js..."
if ! command -v node &> /dev/null; thenecho "安装 Node.js 20 LTS..."# 添加 NodeSource 仓库if [ ! -f "/etc/apt/sources.list.d/nodesource.list" ]; thenecho "添加 NodeSource 仓库..."curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key | sudo -n gpg --dearmor -o /usr/share/keyrings/nodesource.gpgecho "deb [signed-by=/usr/share/keyrings/nodesource.gpg] https://deb.nodesource.com/node_20.x nodistro main" | sudo -n tee /etc/apt/sources.list.d/nodesource.listsudo -n apt-get updatefi# 安装 Node.jssudo -n apt-get install -y nodejs# 验证安装if ! command -v node &> /dev/null; thenecho "Node.js 安装失败"exit 1fi
fi# 显示 Node.js 版本
echo "Node.js 版本:"
node --version
echo "npm 版本:"
npm --version# 安装 Ollama(如果不跳过)
if [[ "$SKIP_OLLAMA" = false ]]; thenecho "安装 Ollama..."curl -fsSL https://ollama.com/install.sh | sh || { echo "Ollama 安装失败"; exit 1; }sudo systemctl enable ollamasudo systemctl start ollama
elseecho "跳过 Ollama 安装。"
fi# 检查 CUDA 环境
check_cuda() {echo "检查 CUDA 环境..."if ! command -v nvidia-smi &> /dev/null; thenecho "警告: 未检测到 NVIDIA GPU 驱动"return 1elseecho "GPU 信息:"nvidia-smi --query-gpu=gpu_name,driver_version,memory.total,memory.free,memory.used,temperature.gpu --format=csv,noheaderreturn 0fi
}# 设置 CUDA 环境
setup_cuda() {# 检查 CUDA 是否已安装if [ -d "/usr/local/cuda-11.4" ]; thenecho "CUDA 11.4 已安装在 /usr/local/cuda-11.4"# 设置环境变量if ! grep -q "export PATH=/usr/local/cuda-11.4/bin" ~/.bashrc; thenecho 'export PATH=/usr/local/cuda-11.4/bin:$PATH' >> ~/.bashrcfiif ! grep -q "export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64" ~/.bashrc; thenecho 'export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH' >> ~/.bashrcfisource ~/.bashrcreturn 0# 如果没有安装且没有 nvcc 命令elif ! command -v nvcc &> /dev/null; thenecho "未检测到 CUDA toolkit,正在安装..."# 检查安装文件是否已存在CUDA_INSTALLER="cuda_11.4.4_470.82.01_linux.run"if [ ! -f "$CUDA_INSTALLER" ]; thenecho "下载 CUDA 11.4 安装包..."wget https://developer.download.nvidia.com/compute/cuda/11.4.4/local_installers/$CUDA_INSTALLERelseecho "CUDA 安装包已存在,跳过下载..."fiecho "安装 CUDA toolkit..."sudo sh $CUDA_INSTALLER --toolkit --silent --override# 设置环境变量if ! grep -q "export PATH=/usr/local/cuda-11.4/bin" ~/.bashrc; thenecho 'export PATH=/usr/local/cuda-11.4/bin:$PATH' >> ~/.bashrcfiif ! grep -q "export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64" ~/.bashrc; thenecho 'export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH' >> ~/.bashrcfisource ~/.bashrcreturn 0fireturn 1
}# 检查 GPU 和设置 CUDA
if check_cuda; thenecho "检测到 GPU,设置 CUDA 环境..."setup_cuda# 设置 GPU 相关环境变量export NODE_ONNX_RUNTIME_GPU=1export CUDA_VISIBLE_DEVICES=0# 显示 CUDA 版本echo "CUDA 版本: $(nvidia-smi | grep "CUDA Version" | awk '{print $9}')"# 下载 GPU 版本的 onnxruntimeecho "下载 onnxruntime GPU 版本..."mkdir -p node_modules/onnxruntime-node/bin/napi-v3/linux/x64cd node_modules/onnxruntime-node/bin/napi-v3/linux/x64# 尝试多个下载源download_file() {local urls=("https://mirror.ghproxy.com/https://github.com/microsoft/onnxruntime/releases/download/v1.20.1/onnxruntime-linux-x64-gpu-1.20.1.tgz""https://hub.fastgit.xyz/microsoft/onnxruntime/releases/download/v1.20.1/onnxruntime-linux-x64-gpu-1.20.1.tgz""https://github.com/microsoft/onnxruntime/releases/download/v1.20.1/onnxruntime-linux-x64-gpu-1.20.1.tgz")for url in "${urls[@]}"; doecho "尝试从 $url 下载..."wget --no-check-certificate \--timeout=15 \--tries=3 \--continue \--inet4-only \-q --show-progress \"$url" && return 0echo "从 $url 下载失败,尝试下一个源..."donereturn 1}if ! download_file; thenecho "GPU 版本下载失败,切换到 CPU 模式..."export NODE_ONNX_RUNTIME_GPU=0elseecho "解压 GPU 版本文件..."tar xzf onnxruntime-linux-x64-gpu-1.20.1.tgzficd -
elseecho "未检测到 GPU,将使用 CPU 模式..."export NODE_ONNX_RUNTIME_GPU=0# 下载 CPU 版本的 onnxruntimeecho "下载 onnxruntime CPU 版本..."mkdir -p node_modules/onnxruntime-node/bin/napi-v3/linux/x64cd node_modules/onnxruntime-node/bin/napi-v3/linux/x64wget --no-check-certificate \--timeout=15 \--tries=3 \--continue \--inet4-only \-q --show-progress \"https://github.com/microsoft/onnxruntime/releases/download/v1.20.1/onnxruntime-linux-x64-1.20.1.tgz"if [ $? -eq 0 ]; thenecho "解压 CPU 版本文件..."tar xzf onnxruntime-linux-x64-1.20.1.tgzelseecho "警告: onnxruntime CPU 版本下载失败"ficd -
fi# 临时设置环境变量
if [ -d "/usr/local/cuda-11.4" ]; thenexport PATH=/usr/local/cuda-11.4/bin:$PATHexport LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH
fi# 检查是否已经在虚拟环境中
if [ -z "$VIRTUAL_ENV" ]; then# 如果不在虚拟环境中,则检查并设置 Condaif ! command -v conda &> /dev/null; thenecho "Conda 未安装或不在 PATH 中,正在设置..."setup_condafi# 再次检查 conda 是否可用if ! command -v conda &> /dev/null; thenecho "Conda 安装失败,请手动安装 Conda 后重试"exit 1fi# 确保 conda 命令可用source "$HOME/.bashrc"eval "$(conda shell.bash hook)"# 检查并删除已存在的环境if conda env list | grep -q "^open-webui "; thenecho "删除已存在的 open-webui 环境..."conda deactivateconda env remove -n open-webui -yfi# 创建并激活 Python 3.11 环境echo "创建 Python 3.11 环境..."conda create -y -n open-webui python=3.11source activate open-webui || conda activate open-webui
elseecho "检测到已存在的虚拟环境: $VIRTUAL_ENV"echo "跳过创建新环境..."
fi# 验证 Python 环境
echo "验证 Python 环境..."
which python
python --version# 创建安装目录
echo "设置 Open WebUI 安装目录..."
INSTALL_DIR="/opt/open-webui"
mkdir -p "$INSTALL_DIR"# 下载或更新 Open WebUI
if [[ "$SKIP_DOWNLOAD" = false ]]; thenecho "下载 Open WebUI..."if [ -d "$INSTALL_DIR/open-webui" ]; thenecho "更新 Open WebUI..."cd "$INSTALL_DIR/open-webui"git pullelseecho "克隆 Open WebUI..."cd "$INSTALL_DIR"git clone https://github.com/open-webui/open-webui.gitfi
elseecho "跳过下载 Open WebUI..."if [ ! -d "$INSTALL_DIR/open-webui" ]; thenecho "错误:Open WebUI 目录不存在于 $INSTALL_DIR/open-webui"echo "请确保目录存在或移除 --no-download 选项"exit 1fi
fi# 设置权限
echo "设置目录权限..."
sudo -n chown -R $USER:$USER "$INSTALL_DIR"# 进入项目目录
cd "$INSTALL_DIR/open-webui"# 安装系统依赖
echo "安装系统依赖..."
if command -v apt-get &> /dev/null; thensudo -n apt-get updatesudo -n apt-get install -y ffmpeg
elif command -v yum &> /dev/null; thensudo -n yum install -y ffmpeg
elif command -v pacman &> /dev/null; thensudo -n pacman -S --noconfirm ffmpeg
elif command -v apk &> /dev/null; thensudo -n apk add --no-cache ffmpeg
elseecho "警告: 无法识别的包管理器,请手动安装 ffmpeg"
fi# 构建前端
echo "构建前端..."
cd /opt/open-webui/open-webuiecho "清理旧的构建文件..."
rm -rf node_modules package-lock.jsonecho "配置 npm..."
npm config set registry https://registry.npmmirror.com
npm config set fetch-retries 5
npm config set fetch-timeout 60000
npm config set progress true
npm config set loglevel infoecho "安装前端依赖..."
# 使用 pnpm 或 npm 安装依赖
if command -v pnpm &> /dev/null; thenecho "使用 pnpm 安装依赖..."# 配置 pnpm 使用淘宝镜像pnpm config set registry https://registry.npmmirror.compnpm install --reporter=default
elseecho "使用 npm 安装依赖..."npm install --verbose
fi# 构建前端
echo "构建前端..."
if command -v pnpm &> /dev/null; thenpnpm run build --reporter=default
elsenpm run build --verbose
fi# 检查构建结果
if [ -d "build" ]; thenecho "前端构建成功!"
elseecho "前端构建失败,请检查错误信息"exit 1
fi# 初始化数据库
echo "初始化数据库..."
cd backend
export PYTHONPATH=/opt/open-webui/open-webui/backend# 运行数据库迁移
echo "运行数据库迁移..."
if [ -f "open_webui/alembic.ini" ]; thencd open_webuiecho "当前目录: $(pwd)"echo "运行迁移..."alembic upgrade headcd ..
elseecho "在以下位置搜索 alembic.ini:"find . -name "alembic.ini" -type fecho "错误: 找不到 alembic.ini"exit 1
fi# 确保 .webui_secret_key 存在
if [ ! -f ".webui_secret_key" ]; thenecho "生成 secret key..."head -c 12 /dev/random | base64 > .webui_secret_key
fi# 设置环境变量
export WEBUI_SECRET_KEY=$(cat .webui_secret_key)
export PORT=8111
export HOST=0.0.0.0# 启动服务
if command -v gunicorn &> /dev/null; thenecho "使用 gunicorn 启动..."gunicorn -w 1 -k uvicorn.workers.UvicornWorker "open_webui.main:app" \--bind 0.0.0.0:8111 \--timeout 300 \--log-level debug \--error-logfile - \--capture-output &# 保存进程 IDGUNICORN_PID=$!echo "Gunicorn PID: $GUNICORN_PID"
elseecho "使用 uvicorn 启动..."python -m uvicorn "open_webui.main:app" \--host 0.0.0.0 \--port 8111 \--log-level debug &# 保存进程 IDUVICORN_PID=$!echo "Uvicorn PID: $UVICORN_PID"
fi# 等待后端启动
echo "等待服务启动..."
for i in {1..30}; doif curl -s http://localhost:8111/health > /dev/null; thenecho "服务已启动成功!"echo "请访问 http://localhost:8111"breakfi# 检查进程是否还在运行if [ ! -z "$GUNICORN_PID" ] && ! ps -p $GUNICORN_PID > /dev/null; thenecho "错误: Gunicorn 进程已退出"breakfiif [ ! -z "$UVICORN_PID" ] && ! ps -p $UVICORN_PID > /dev/null; thenecho "错误: Uvicorn 进程已退出"breakfiecho "尝试 $i/30..."sleep 1
done# 如果服务没有启动,显示调试信息
if ! curl -s http://localhost:8111/health > /dev/null; thenecho "服务启动失败,显示调试信息:"echo "Python 路径: $PYTHONPATH"echo "当前目录: $(pwd)"echo "Python 版本: $(python --version)"echo "已安装的包:"pip listecho "目录内容:"ls -laecho "open_webui 目录内容:"ls -la open_webui/echo "进程状态:"ps aux | grep -E "gunicorn|uvicorn"echo "端口状态:"netstat -tuln | grep 8111echo "日志内容:"tail -n 50 /var/log/syslog | grep -E "gunicorn|uvicorn|open_webui"
fi# 创建系统服务
echo "创建系统服务..."
sudo tee /etc/systemd/system/open-webui-backend.service << EOL
[Unit]
Description=Open WebUI Backend
After=network.target[Service]
Type=simple
User=$USER
WorkingDirectory=/opt/open-webui/open-webui/backend
ExecStart=/opt/open-webui/open-webui/venv/bin/gunicorn -w 4 -k uvicorn.workers.UvicornWorker main:app --bind 0.0.0.0:8111
Environment="PATH=/opt/open-webui/open-webui/venv/bin"
Restart=on-failure
StandardOutput=syslog
StandardError=syslog
SyslogIdentifier=open-webui-backend[Install]
WantedBy=multi-user.target
EOL# 启动并启用服务
echo "启动 Open WebUI 服务..."
sudo systemctl daemon-reload
sudo systemctl enable open-webui-backend
sudo systemctl start open-webui-backend# 配置防火墙
echo "配置防火墙..."
sudo ufw allow 8111/tcpecho "安装成功完成!"
echo "您现在可以通过 http://localhost:8111 访问 Open WebUI。"
echo "首次访问时,请创建一个管理员账户。"

使用方法:

将脚本保存为文件,例如 install_open_webui.sh。赋予脚本执行权限:
bash
复制chmod +x install_open_webui.sh运行脚本:默认安装(包含 Ollama):bash复制./install_open_webui.sh跳过 Ollama 安装:bash复制./install_open_webui.sh --no-ollama

注意事项:

确保您具有 sudo 权限来运行脚本。如果安装失败,可以通过以下命令查看服务日志:
bash
复制sudo journalctl -u open-webui-backend如果前端构建失败,请确保已正确安装 nodejs 和 npm,然后手动运行以下命令:
bash
复制npm install
npm run build

如果有其他问题,欢迎随时提问!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/67375.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AJAX笔记入门篇

黑马程序员视频地址&#xff1a; 黑马程序员前端AJAX入门到实战全套教程https://www.bilibili.com/video/BV1MN411y7pw?vd_source0a2d366696f87e241adc64419bf12cab&spm_id_from333.788.videopod.episodes&p2https://www.bilibili.com/video/BV1MN411y7pw?vd_source…

工作总结:git篇

文章目录 前言基础Gerrit1.克隆2.新建本地分支和checkout3.添加到暂存区新增文件到暂存区修改已经添加到暂存区的文件取消添加到暂存区的文件 4.提交到本地仓库在不重复提交的情况下&#xff0c;修改本次提交 5.提交到远程仓库6.评审其他辅助命令 前言 目前也算是工作一段时间…

< OS 有关> BaiduPCS-Go 程序的 菜单脚本 Script: BaiduPCS-Go.Menu.sh (bdgo.sh)

目标&#xff1a; 使用 日本阿里云的 VPM 传输文件。 暂时方案&#xff1a; 使用 主机JPN 下载 https://huggingface.co/ 上模型从 JPN 放到 度狗上在家里从狗度下载 为了减少编程&#xff0c;尽量使用现在软件 &#xff0c;就找到 GitHub - qjfoidnh/BaiduPCS-Go: iikira…

项目测试之MockMvc

文章目录 基础基础概念Mockxxx一般实现文件位置 实战MockMvc与Test注解不兼容RequestParams参数RequestBody参数 基础 基础概念 定义&#xff1a;是Spring框架提供的一种用于测试Spring MVC控制器的工具&#xff0c;它允许开发者在不启动完整的web服务器的情况下&#xff0c;…

(详细)Springboot 整合动态多数据源 这里有mysql(分为master 和 slave) 和oracle,根据不同路径适配不同数据源

文章目录 Springboot 整合多动态数据源 这里有mysql&#xff08;分为master 和 slave&#xff09; 和oracle1. 引入相关的依赖2. 创建相关配置文件3. 在相关目录下进行编码&#xff0c;不同路径会使用不同数据源 Springboot 整合多动态数据源 这里有mysql&#xff08;分为maste…

计算机网络之计算机网络的分类

计算机网络可以根据不同的角度进行分类&#xff0c;以下是几种常见的分类方式&#xff1a; 1. 按照规模和范围&#xff1a; 局域网&#xff08;LAN&#xff0c;Local Area Network&#xff09;&#xff1a;覆盖较小范围&#xff08;例如一个建筑物或校园&#xff09;&#xf…

腾讯云开发提供免费GPU服务

https://ide.cloud.tencent.com/dashboard/web 适用于推理场景&#xff0c;每个月10000分钟免费时长 166 小时 40 分钟 自带学术加速&#xff0c;速度还是不错的 白嫖 Tesla T4 16G 算力 显存&#xff1a;16GB 算力&#xff1a;8 TFlops SP CPU&#xff1a;8 核 内存&#…

国内外大语言模型领域发展现状与预期

在数字化浪潮中&#xff0c;大语言模型已成为人工智能领域的关键力量&#xff0c;深刻影响着各个行业的发展轨迹。下面我们将深入探讨国内外大语言模型领域的发展现状以及未来预期。 一、发展现状 &#xff08;一&#xff09;国外进展 美国的引领地位&#xff1a;OpenAI 的 …

存储过程优化实践:统一返回结构、参数 JSON 化与事务原子化

存储过程作为数据库中执行复杂业务逻辑的重要工具&#xff0c;在提升性能、保障数据一致性和简化维护方面发挥着重要作用。然而&#xff0c;随着应用程序和数据的复杂度不断增加&#xff0c;存储过程也面临着性能瓶颈、维护难度和扩展性问题。为了应对这些挑战&#xff0c;优化…

Lustre Core 语法 - 布尔表达式

Lustre v6 中的 Lustre Core 部分支持的表达式种类中&#xff0c;支持布尔表达式。相关的表达式包括and, or, xor, not, #, nor。 相应的文法定义为 Expression :: not Expression| Expression and Expression| Expression or Expression | Expression xor Expression | # (…

DeepSeek--通向通用人工智能的深度探索者

一、词源与全称 “DeepSeek"由"Deep”&#xff08;深度&#xff09;与"Seek"&#xff08;探索&#xff09;组合而成&#xff0c;中文译名为"深度求索"。其全称为"深度求索人工智能基础技术研究有限公司"&#xff0c;英文对应"De…

模板生成引擎技术介绍

模板生成引擎技术介绍 什么是模板生成引擎&#xff1f; 模板生成引擎是一种用于将数据与预定义的格式相结合&#xff0c;以生成最终文档或网页的技术。它允许开发者通过定义模板和填充数据来自动化内容创建过程。这种技术广泛应用于网站开发、报告生成、电子邮件定制等多个领…

第 5 章:声音与音乐系统

5.1 声音效果的应用 在游戏中&#xff0c;声音效果是增强游戏沉浸感和趣味性的重要元素。Pygame 提供了强大的音频处理功能&#xff0c;使得添加各种声音效果变得相对简单。声音效果可以包括角色的动作音效&#xff0c;如跳跃、攻击、受伤时的声音&#xff1b;环境音效&#x…

matlab中,fill命令用法

在 MATLAB 中&#xff0c;fill 命令用于创建填充多边形的图形对象。使用 fill 可以在二维坐标系中绘制填充的区域&#xff0c;通常用于绘制图形的背景或显示数据分布。 基本语法 fill(X, Y, C)X 和 Y 是同样长度的向量&#xff0c;定义了多边形的顶点坐标。C 是颜色&#xff0…

ChatGPT 搜索测试整合记忆功能

据 TestingCatalog 报道&#xff0c;OpenAI 正在测试 ChatGPT 搜索的整合记忆功能&#xff0c;被命名为 “Memory in search”2。以下是关于该功能的具体情况123&#xff1a; 功能特点 个性化搜索&#xff1a;启用该功能后&#xff0c;ChatGPT 能利用存储的记忆数据&#xff0…

新站如何快速获得搜索引擎收录?

本文来自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/8.html 新站想要快速获得搜索引擎收录&#xff0c;需要采取一系列有针对性的策略。以下是一些具体的建议&#xff1a; 一、网站内容优化 高质量原创内容&#xff1a; 确保网站内容原创、…

指定dpkg安装deb包时的安装路径

通过install和ctonrol文件设置安装路径 在使用dpkg安装.deb包时&#xff0c;一般不能直接指定安装路径&#xff0c;因为.deb包内部已经定义了文件的安装位置。这些位置是在打包.deb包时通过控制文件&#xff08;通常是debian/control和debian/install等文件&#xff09;指定的…

开发者交流平台项目部署到阿里云服务器教程

本文使用PuTTY软件在本地Windows系统远程控制Linux服务器&#xff1b;其中&#xff0c;Windows系统为Windows 10专业版&#xff0c;Linux系统为CentOS 7.6 64位。 1.工具软件的准备 maven&#xff1a;https://archive.apache.org/dist/maven/maven-3/3.6.1/binaries/apache-m…

汽车定速巡航

配备定速巡航功能的车型&#xff0c;一般在方向盘附近设有4~6个按键&#xff08;可能共用键位&#xff09;。 要设置定速巡航&#xff0c;不仅需要方向盘上的按键&#xff0c;还要油门配合。 设置的一般流程&#xff1a; 开关&#xff1a;类似步枪上的“保险”&#xff0c;按…

C++11中array容器的常见用法

文章目录 一、概述二、std::array的特点三、std::array的定义与初始化三、std::array的常用成员函数四、与 C 风格数组的互操作 一、概述 在 C11 中&#xff0c;std::array 是一个新的容器类型&#xff0c;它提供了一个固定大小的数组封装。相比传统的 C 风格数组&#xff0c;…