机器学习-线性回归(参数估计之经验风险最小化)

给定一组包含 𝑁 个训练样本的训练集

我们希望能够 学习一个最优的线性回归的模型参数 𝒘 

现在我们来介绍线性回归的一种模型参数估计方法:经验风险最小化。

我们前面说过,对于标签 𝑦 和模型输出都为连续的实数值,平方损失函数非常合适衡量真实标签和预测标签之间的差异。

因此这里大家需要注意一点,经验风险最小化在线性回归中,一般使用均方误差作为损失函数。

一、先来理解一下均方误差作为损失函数时,对应的矩阵形式如何表示

(一)先来认识什么是二范数?

1、二范数的数学定义:

2、二范数的几何解释

3、二范数的代数解释

4、二范数的性质

5、二范数在机器学习中的应用

(二)再来理解均方误差的矩阵表示

线性回归中,均方误差(Mean Squared Error, MSE)二范数(L2L_2L2​范数)之间有密切的关系。均方误差实际上是预测误差向量的二范数的平方的均值,在矩阵形式下,可以用二范数的表达方式来表示。

1、均方误差(MSE)的定义

2、结合二范数的概念,则可以推导出:

二、现在我们回到标题,掌握如何通过经验风险最小化来学习线性回归的最优参数

在机器学习中,经验风险最小化(Empirical Risk Minimization, ERM)是一种常用的策略,用来在给定的训练数据上找到最优的模型参数。对于线性回归(Linear Regression),我们可以使用经验风险最小化来求解最优参数 w,从而最小化模型的损失。

(一)正规方程求解最优参数 w

1. 问题描述

假设我们有一个线性回归模型,其形式为:

其中:

目标:
利用经验风险最小化,学习最优的 w,使得模型的预测误差最小。

2. 经验风险最小化(ERM)框架

经验风险定义为训练数据上的损失函数的均值

对于线性回归,常用的损失函数是均方误差(MSE, Mean Squared Error)

因此,经验风险(均方误差)可表示为:

用矩阵表示:

ERM目标:
通过最小化均方误差来找到最优的 w:

3. 解析解求解过程

4. 示例:具体计算过程

假设数据如下:

x1x2y
125
3411
5617

5. 结论

使用经验风险最小化学习线性回归模型的步骤如下:

  1. 定义目标函数: 均方误差
  2. 最小化损失函数: 通过求导得到闭式解(正规方程)。
  3. 计算最优参数:
  4. 预测新数据: 使用得到的 w 进行预测。

(二)梯度下降法求解最优参数 w

除了使用正规方程求解最优参数 w之外,**梯度下降法(Gradient Descent)**也是一种常见的方法,尤其适用于高维数据或特征数量很大的情况下。梯度下降可以在没有直接解析解或矩阵维度过大导致计算成本过高时,提供一种更为高效的优化手段。

梯度下降法求解线性回归的最优参数

(1) 问题回顾

(2) 梯度下降法的基本思想

梯度下降是一种迭代优化算法,通过沿着损失函数梯度的反方向不断更新参数 w,直到收敛到最优值。

更新公式:

(3) 计算梯度

(4) 梯度下降算法步骤

(5) 示例

第 2 次迭代计算:

(6) 什么时候使用梯度下降?
  • 数据量大时
  • 特征数量多,尤其是当 XX稀疏时,梯度下降可有效利用稀疏矩阵优化。
  • 适用于在线学习,当数据逐步到来时,可以使用**随机梯度下降(SGD)**来不断更新模型。

梯度下降 vs 正规方程的比较

方法优点缺点适用场景
正规方程无需迭代,求解精确解,数学简单当数据量大时计算开销大低维数据,数据量较小时
梯度下降适合大规模数据,计算复杂度低需调参(学习率),可能收敛慢高维数据,流式数据处理

其他优化算法

除了梯度下降,线性回归的优化还可以使用:

  • 随机梯度下降(SGD):每次随机选择一个样本进行更新,适用于大数据集。
  • 动量梯度下降:加速收敛,减少震荡。
  • L-BFGS(拟牛顿法):适用于更复杂的回归问题。

其中动量梯度下降和L-BFGS(拟牛顿法),我们后面再学习。

结论

  1. 正规方程:适用于小规模数据,直接求解闭式解。
  2. 梯度下降法:适用于大规模数据,通过迭代优化找到近似解,尤其在高维和大数据集情况下表现更优。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/67274.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前部分知识复习02

一、物体的屏幕UV坐标 float2 ScreenUV i.pos.xy / _ScreenParams.xy; 二、抓取屏幕图像 GrabPass{" _A "} //_A为贴图图像名称 之后需在Pass中声明该贴图才能在Pass中引用此贴图 三、屏幕抓取并制作热效应代码 Shader"unity/HeatDistort 07" {Pr…

YOLOv8:目标检测与实时应用的前沿探索

随着深度学习和计算机视觉技术的迅速发展,目标检测(Object Detection)一直是研究热点。YOLO(You Only Look Once)系列模型作为业界广受关注的目标检测框架,凭借其高效、实时的特点,一直迭代更新…

【MQ】探索 Kafka

高性能 消息的顺序性、顺序写磁盘 零拷贝 RocketMQ内部主要是使用基于mmap实现的零拷贝,用来读写文件 减少cpu的拷贝次数和上下文切换次数,实现文件的高效读写操作 Kafka 零拷贝 Kafka 使用到了 mmap 和 sendfile 的方式来实现零拷贝。分别对应 Jav…

VMware 和本机(Win10)安装共享文件

1. 安装VM-tools, sudo apt-get install open-vm-tools-desktop -y 2. VMware->设置-> 选项中启动共享文件夹. 3. 本机设置共享文件夹(文件目录为data),右键属性设置: VMware, Other Locations->Computer->mnt->data 即可。 ps: 还有个…

2025美赛MCM数学建模A题:《石头台阶的“记忆”:如何用数学揭开历史的足迹》(全网最全思路+模型)

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ 《石头台阶的“记忆”:如何用数学揭开历史的足迹》 目录 《石头台阶的“记忆”:如何用数学揭开历史的足迹》 ✨摘要✨ ✨引言✨ 1. 引言的结构 2. 撰写步骤 (1)研究背景 &#…

SpringBoot-Vue整合百度地图

文章目录 一、Spring Boot整合百度地图的步骤1. 申请百度地图的AK值2. 创建实体类3. 创建Controller层4. 前端集成百度地图4.1 在Vue项目中安装百度地图Vue组件库4.2 在Vue项目中引入百度地图API4.3 创建地图组件 二、实现功能说明1. 前端部分:2. 后端部分&#xff…

Baklib如何优化企业知识管理实现全面数字化升级与协同创新

内容概要 Baklib 作为企业知识管理的重要工具,提供了一个集成化的知识中台,帮助企业在数字化转型过程中更高效地管理和利用其知识资产。在现代企业中,知识的管理和应用显得尤为重要,因为优秀的知识管理能够直接影响到组织的决策效…

机器学习day4

自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测 import numpy as np import torch import torch.nn as nn import torch.optim as optimizer import matplotlib.pyplot as pltclass1_points np.array([[2.1, 1.8],[1.9, 2…

天道无极:论文明兴衰中的规律自觉与文化觉醒

宇宙洪荒,星河轮转,人类文明在浩渺时空中不过沧海一粟。当我们剖开青铜器上的饕餮纹,凝视量子计算机的硅基瞳孔,会发现所有文明兴衰的背后都跃动着同一组密码——对规律的认知与驾驭程度,构成了文明存续的底层逻辑。从两河流域的楔形文字到华尔街的电子屏幕,从雅典学院的…

Linux解决输入法卡死问题

说明:在Ubuntu系统中,如果您需要重启输入法服务(比如fcitx或ibus),您可以按照以下步骤操作。这些步骤适用于大多数基于Ubuntu的发行版,例如Ubuntu、Linux Mint等。 一、重启Fcitx输入法服务 1、使用Ctrl …

区间选点(贪心)

给定 NN 个闭区间 [ai,bi][ai,bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。 输出选择的点的最小数量。 位于区间端点上的点也算作区间内。 输入格式 第一行包含整数 NN,表示区间数。 接下来 NN 行,…

WPF基础 | WPF 常用控件实战:Button、TextBox 等的基础应用

WPF基础 | WPF 常用控件实战:Button、TextBox 等的基础应用 一、前言二、Button 控件基础2.1 Button 的基本定义与显示2.2 按钮样式设置2.3 按钮大小与布局 三、Button 的交互功能3.1 点击事件处理3.2 鼠标悬停与离开效果3.3 按钮禁用与启用 四、TextBox 控件基础4.…

【huawei】云计算的备份和容灾

目录 1 备份和容灾 2 灾备的作用? ① 备份的作用 ② 容灾的作用 3 灾备的衡量指标 ① 数据恢复时间点(RPO,Recoyery Point Objective) ② 应用恢复时间(RTO,Recoyery Time Objective) 4…

Vue 封装http 请求

封装message 提示 Message.js import { ElMessage } from "element-plus";const showMessage (msg,callback,type)>{ElMessage({message: msg,type: type,duration: 3000,onClose:()>{if (callback) {callback();}}}); }const message {error: (msg,…

简单的停车场管理系统的C语言实现示例

以下是一个简单的停车场管理系统的C语言实现示例。该示例使用结构体来管理停车场的车位信息&#xff0c;并提供基本车辆进入、离开以及显示停车场状态功能。 #include <stdio.h> #include <stdlib.h> #include <string.h>#define MAX_SLOTS 10 // 最大车位数…

解除阿里云盘压缩包分享限制的最新工具(2025年更新)

前言 前段时间&#xff0c;为了在阿里云盘分享一些资料&#xff0c;尝试了好多种方法&#xff1a;改文件名后缀&#xff0c;打包自解压&#xff0c;使用将压缩文件追加在图片文件后&#xff0c;还有的一些工具&#xff0c;虽然能伪装文件但并不太好用&#xff0c;最后自己写了…

HarmonyOS:创建应用静态快捷方式

一、前言 静态快捷方式是一种在系统中创建的可以快速访问应用程序或特定功能的链接。它通常可以在长按应用图标&#xff0c;以图标和相应的文字出现在应用图标的上方&#xff0c;用户可以迅速启动对应应用程序的组件。使用快捷方式&#xff0c;可以提高效率&#xff0c;节省了查…

21.0.2-为什么选FreeRTOS 第21章-FreeRTOS项目实战--基础知识之新建任务、启动流程、编码风格、系统配置

这个是全网最详细的STM32项目教学视频。 第一篇在这里: 视频在这里 STM32智能小车V3-STM32入门教程-openmv与STM32循迹小车-stm32f103c8t6-电赛 嵌入式学习 PID控制算法 编码器电机 跟随 **V3:HAL库开发、手把手教学下面功能&#xff1a;PID速度控制、PID循迹、PID跟随、遥控、…

12 款开源OCR发 PDF 识别框架

2024 年 12 款开源文档解析框架的选型对比评测&#xff1a;PDF解析、OCR识别功能解读、应用场景分析及优缺点比较 这是该系列的第二篇文章&#xff0c;聚焦于智能文档处理&#xff08;特别是 PDF 解析&#xff09;。无论是在模型预训练的数据收集阶段&#xff0c;还是基于 RAG…

DeepSeek R1:推理模型新纪元与价格战

标题&#xff1a;DeepSeek R1&#xff1a;推理模型新纪元与价格战 文章信息摘要&#xff1a; DeepSeek R1的发布标志着推理模型研究的重要转折点&#xff0c;其采用四阶段强化学习训练方法&#xff0c;结合监督微调和拒绝采样&#xff0c;显著提升了模型的推理能力。这一进展不…