初识Linux · 信号处理 · 续

目录

前言:

可重入函数

重谈进程等待和优化


前言:

在前文,我们已经介绍了信号产生,信号保存,信号处理的主题内容,本文作为信号处理的续篇,主要是介绍一些不那么重要的内容,第一个点是可重入函数,第二个点是在信号处理这里的进程等待。

那么话不多说,我们进入主题吧!


可重入函数

大家对于链表的增删查改已经是什么熟悉了吧?在Linux中,如果我们有一个链表,我们要对链表执行的操作是insert,那么从main函数进去之后,进行p->next这步的时候突然进行信号捕捉的话,这里肯定有人会有疑问的了,为什么会进行信号捕捉呢

如果是这个进程的时间片到了呢?OS要调度其他的进程了,那么从用户态转到了内核态,此时进行信号的捕捉,所以捕捉到了信号,就又会插入节点,原本插入的节点是Node1的,这下多出来了一个Node2节点,可是我们甚至没有办法去调用node2节点,这造成的问题是什么呢?

造成的问题是十分严重的,即内存泄漏

那么这种函数,会造成内存泄漏,或者说是涉及到了共享资源的,比如堆的开辟,比如全局变量,比如静态变量都是共享的,涉及到了以上共享资源的函数,就不满足可重入性

那么我们应该如何实现具备可重入性的函数呢?

  1. 不使用全局或静态变量:因为全局或静态变量是共享的,多个线程同时访问可能会导致数据不一致。如果必须使用,则必须通过适当的同步机制(如互斥锁)来保护这些变量。

  2. 不调用不可重入的函数:如果一个函数调用了另一个不可重入的函数,那么它本身也会变成不可重入的。

  3. 不返回指向静态分配的内存的指针:因为这可能导致多个线程返回相同的指针,从而访问和修改相同的内存区域。

  4. 不使用任何依赖于特定线程环境的资源:例如,某些I/O操作(如标准输入/输出)可能依赖于特定的线程环境,如果它们不是线程安全的,那么调用这些操作的函数就不是可重入的。

其实方式很简单,我们只需要保证该函数没有使用共享资源即可,反例是stl里面的容器,几乎所有的容器都涉及到了堆上的开辟,比如扩容等操作,那么这些所有函数就不是可重入的。

这个点我们了解一下即可。


重谈进程等待和优化

有人好奇咯,这里明明介绍的是信号,和进程等待有什么关系呢?这里更厉害的其实还有涉及到了编译器的优化方面,并且编译器优化也分为了几个层次,我们先从进程等待入手。

我们先看一段代码:

int gflag = 0;void changedata(int signo)
{std::cout << "get a signo:" << signo << ", change gflag 0->1" << std::endl;gflag = 1;
}int main() // 没有任何代码对gflag进行修改!!!
{signal(2, changedata);while(!gflag); // while不要其他代码std::cout << "process quit normal" << std::endl;
}

可以发现发送2号信号之后,发现gflag确实是从0变成了1,不然while循环也是不能结束的。

好了,现在我们来谈谈编译器优化的问题,在C++里,连续的拷贝构造 + 构造,编译器是直接会优化成直接构造的,这个我们是十分清楚的。

那么,g++也是个编译器吧?它也会进行相应的优化,我们先man一下g++:

这一行代表的优化成都,默认的优化是O0,我们也可以在编译的时候修改优化程度,可是我们光是知道优化是没有用的,我们还需要介绍一下上面代码的硬件部分知识:

对于cpu来说,它执行的运算一般是分为逻辑运算和算数运算的,对于上面while里面的判断,执行的就是逻辑运算,不管是哪种运算,将值放到寄存器的时候,都是从物理内存里面放吧?

好,现在是cpu从物理内存里面得到对应的数据,当然这个过程是由OS来完成的,那么,每次都要从物理内存拿这个数据是不是有点麻烦OS了?所以编译器在这里如果开了优化,那么就不让cpu从物理内存里面获取gflag的值了,直接就让cpu从寄存器里面获取,也就是说,从运行函数开始,寄存器里面只有一个值,也就是第一次while判断里的gflag的值,那么也就代表,我们即便是修改了gflag的值,cpu也不知道,因为它只从寄存器里面读取:

将对应的makefile修改一下,然后我们试试:

发现的现象是,嘿!退不出去了,也就印证了编译器在这里的优化。

这种现象叫做没有保持内存的可见性。

那么我们如何保持内存的可见性呢?很简单,只需要用到一个关键字就可以了,volatile即可,这个在const部分我们也有使用该国,这里加一个关键字的事儿,所以就不过多演示了。


好了,现在我们来谈谈进程的等待。

我们知道,父进程一般是会等待子进程的吧?并且父进程要收集子进程的退出信息吧?

可是父进程怎么知道子进程什么时候退出呢?

实际上,子进程退出的时候,是会给父进程发送相关信号的,该信号是SIGCHLD:

该信号是对应的17号信号。

默认的行为其实是Ign,也就是忽略的意思。

void notice(int signo)
{std::cout << "get a signal: " << signo << " pid: " << getpid() << std::endl;pid_t rid = waitpid(-1, nullptr, 0);if (rid > 0){std::cout << "wait child success, rid: " << rid << std::endl;}else if (rid < 0){std::cout << "wait child success done " << std::endl;}
}
void DoOtherThing()
{std::cout << "DoOtherThing~" << std::endl;
}
int main()
{signal(SIGCHLD, notice);pid_t id = fork();if (id == 0){std::cout << "I am child process, pid: " << getpid() << std::endl;sleep(3);exit(1);}// fatherwhile (true){DoOtherThing();sleep(1);}return 0;
}

对于上面的代码是我们信号处理部分熟知的,我们通过这个代码,验证了子进程退出的时候的的确确会发送17号信号,可是我们在信号处理的时候也知道了,信号如果还没有处理完,是会自动屏蔽当前多出来的信号的,也就是我们创建多个子进程的事儿:

    for (int i = 0; i < 10; i++){pid_t id = fork();if (id == 0){std::cout << "I am child process, pid: " << getpid() << std::endl;sleep(3);exit(1);}}

做了以上的修改之后,我们发现:

创建子进程之后,父进程等待子进程是一个一个等待的,这也验证了之前所说的,信号被屏蔽之后,会继续处理被屏蔽的信号。

那么,你说有没有进程是一直不退出的呢?如果创建了一个永远不退出的子进程怎么办?假设这里存在5个要退出的子进程,5个不知道是否退出的子进程,难道父进程要一个一个的问你是否要退出吗?

这是不现实的,如果父进程真的傻傻的去等待了,导致的结果就是两个进程永远退出不了,只能被系统回收。因为造成了阻塞,所以,我们可以将等待方式设置一下,变成非阻塞等待:

void notice(int signo)
{std::cout << "get a signal: " << signo << " pid: " << getpid() << std::endl;while (true){pid_t rid = waitpid(-1, nullptr, WNOHANG); // 阻塞啦!!--> 非阻塞方式if (rid > 0){std::cout << "wait child success, rid: " << rid << std::endl;}else if (rid < 0){std::cout << "wait child success done " << std::endl;break;}else{std::cout << "wait child success done " << std::endl;break;}}
}

并且,当我们对于17号信号设置成了忽略,子进程也不会出现僵尸问题了。

以上是对于信号处理的补充。


感谢阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/59935.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

流量模型 -20241118

流量模型 个体的注意力注意力提升销量&#xff0c;转化为直接收益&#xff0c;同时提升品牌价值购物平台的出现使注意力变现变得简单&#xff0c;开拓了注意力的的使用方式&#xff0c;使其分散使用转变为集中使用各个视频&#xff0c;直播平台集中注意力&#xff0c;使得流量…

微信小程序 最新获取用户头像以及用户名

一.在小程序改版为了安全起见 使用用户填写来获取头像以及用户名 二.代码实现 <view class"login_box"><!-- 头像 --><view class"avator_box"><button wx:if"{{ !userInfo.avatarUrl }}" class"avatorbtn" op…

WPF MVVM框架

一、MVVM简介 MVC Model View Control MVP MVVM即Model-View-ViewModel&#xff0c;MVVM模式与MVP&#xff08;Model-View-Presenter&#xff09;模式相似&#xff0c;主要目的是分离视图&#xff08;View&#xff09;和模型&#xff08;Model&#xff09;&#xff0c;具有低…

云原生周刊:Kubernetes v1.32 要来了

开源项目推荐 Woodpecker Woodpecker 是一款轻量级且功能强大的 CI/CD 引擎&#xff0c;以其高度可扩展性和易用性著称。它支持多种版本控制系统与编程语言&#xff0c;能够灵活适配不同开发流程&#xff0c;帮助团队实现高效的持续集成与交付。无论是个人项目还是大型团队&a…

Elasticsearch-Elasticsearch-Rest-Client(三)

1&#xff09;TCP spring-data-elasticsearch:transport-api.jar&#xff1b; springboot版本不同&#xff0c;transport-api.jar不同&#xff0c;不能适配es版本, 7.x已经不建议使用&#xff0c;8以后就要废弃 2&#xff09;、9200&#xff1a;HTTP JestClient&#xff1a;…

【算法】【优选算法】前缀和(下)

目录 一、560.和为K的⼦数组1.1 前缀和1.2 暴力枚举 二、974.和可被K整除的⼦数组2.1 前缀和2.2 暴力枚举 三、525.连续数组3.1 前缀和3.2 暴力枚举 四、1314.矩阵区域和4.1 前缀和4.2 暴力枚举 一、560.和为K的⼦数组 题目链接&#xff1a;560.和为K的⼦数组 题目描述&#x…

区块链预言机;预言机的部署、与智能合约的关系以及是否分布式;基于Fabric联盟链与链外世界的数据交互

目录 区块链预言机 简单理解 举例说明 注意事项 预言机的部署、与智能合约的关系以及是否分布式 预言机的部署 预言机与智能合约的关系 预言机是否分布式 简单举例说明 基于Fabric联盟链与链外世界的数据交互 预言机整体架构 推送预言机 区块链预言机 是一个相对专…

两大新兴开发语言大比拼:Move PK Rust

了解 Move 和 Rust 的差异有助于开发者根据项目的具体需求选择最合适的语言。选择不恰当的语言可能会导致项目后期出现技术债务。不同语言有其独特的优势。了解 Move 和 Rust 的差异可以帮助开发者拓展技术视野&#xff0c;发现不同语言在不同领域的应用潜力。 咱们直奔主题&a…

Scaling Law的“终结“还是新起点?——开源实践者的深度思考

作者&#xff1a;宋大宝&#xff0c;与大宝同学因那篇《回顾总结展望「融合RL与LLM思想&#xff0c;探寻世界模型以迈向AGI」》结识于今年春天&#xff0c;虽我们当时某些思想观念有些出入&#xff0c;也碰撞出了很多火花与共鸣&#xff0c;并持续地相互启发的走到了现在。他是…

“fc-async”提供了基本的异步处理能力

在开发中,异步处理已经成为提升系统性能和用户体验的常用方式。然而,传统的@Async注解和基础的异步处理工具在面对复杂的任务场景时,存在局限性。这些局限性包括但不限于高并发环境下的稳定性、任务失败后的恢复机制、以及任务的监控和管理。 开源项目“fc-async”提供了基…

Docker的基本概念、安装步骤以及一些简单的用法

Docker 是一种开源的容器化平台&#xff0c;允许开发者打包应用及其依赖项到一个可移植的容器中。容器可以在任何支持Docker的环境中运行&#xff0c;这使得应用的部署和管理变得更加简单和高效。 1. Docker的基本概念 在深入学习Docker之前&#xff0c;了解一些基本概念是很…

mybatisPlus打印sql配置

MyBatis-Plus 提供了方便的配置方式来打印 SQL 查询语句&#xff0c;以便进行调试和性能分析。可以通过配置 log 来输出 SQL 语句以及执行的参数。 方法 1&#xff1a;通过 application.properties 或 application.yml 配置打印 SQL 可以通过配置 application.properties 或 a…

Ubuntu 的 ROS 操作系统 turtlebot3 导航仿真

引言 导航仿真是机器人自动化系统中不可或缺的一部分&#xff0c;能够帮助开发者在虚拟环境中测试机器人在复杂场景下的运动与路径规划。 在 Gazebo 仿真环境中&#xff0c;TurtleBot3 配合 ROS 操作系统提供了强大的导航功能。在进行导航仿真时&#xff0c;首先需要准备地图&…

FFmpeg 4.3 音视频-多路H265监控录放C++开发十三.2:avpacket中包含多个 NALU如何解析头部分析

前提&#xff1a; 注意的是&#xff1a;我们这里是从avframe转换成avpacket 后&#xff0c;从avpacket中查看NALU。 在实际开发中&#xff0c;我们有可能是从摄像头中拿到 RGB 或者 PCM&#xff0c;然后将pcm打包成avframe&#xff0c;然后将avframe转换成avpacket&#xff0…

java八股-jvm入门-程序计数器,堆,元空间,虚拟机栈,本地方法栈,类加载器,双亲委派,类加载执行过程

文章目录 PC Register堆虚拟机栈方法区(Metaspace元空间双亲委派机制类加载器 类装载的执行过程 PC Register 程序计数器&#xff08;Program Counter Register&#xff09;是 Java 虚拟机&#xff08;JVM&#xff09;中的一个组件&#xff0c;它在 JVM 的内存模型中扮演着非常…

使用Web Animations API实现复杂的网页动画效果

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 使用Web Animations API实现复杂的网页动画效果 使用Web Animations API实现复杂的网页动画效果 使用Web Animations API实现复杂…

本草纲目数字化:Spring Boot在中药实验管理中的应用

1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及&#xff0c;互联网成为人们查找信息的重要场所&#xff0c;二十一世纪是信息的时代&#xff0c;所以信息的管理显得特别重要。因此&#xff0c;使用计算机来管理中药实验管理系统的相关信息成为必然。开发…

xpath表达式学习总结

获取所有节点 获取符合某一特征的所有节点&#xff0c;用// 比如&#xff1a;获取a标签的所有节点&#xff0c;使用//a 比如&#xff1a;获取所有class为"m-b-sm"的h2节点&#xff0c;使用//h2[class“m-b-sm”] 获取子节点 获取某个节点下符合某一特征的所有子节…

无人机挂载超细干粉灭火装置技术详解

无人机挂载超细干粉灭火装置技术是一种创新的灭火方式&#xff0c;结合了无人机的远程操控能力和超细干粉灭火剂的高效灭火性能。以下是对该技术的详细解析&#xff1a; 一、技术背景与原理 背景&#xff1a;高层建筑灭火救援困难一直是公认的世界性难题。无人机技术的发展为…

Linux下MySQL的简单使用

Linux下MySQL的简单使用 导语MySQL安装与配置MySQL安装密码设置 MySQL管理命令myisamchkmysql其他 常见操作 C语言访问MYSQL连接例程错误处理使用SQL 总结参考文献 导语 这一章是MySQL的使用&#xff0c;一些常用的MySQL语句属于本科阶段内容&#xff0c;然后是C语言和MySQl之…