YOLOv10改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数

一、本文介绍

这篇文章介绍了YOLOv10的重大改进,特别是在损失函数方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如SIoU、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Focus”思想,创造了一系列新的损失函数。这些组合形式的损失函数超过了二十余种,每种都针对特定的目标检测挑战进行优化。文章会详细探讨这些损失函数如何提高YOLOv10在各种检测任务中的性能,包括提升精度、加快收敛速度和增强模型对复杂场景的适应性本文章主要是为了发最近新出的Inner思想改进的各种EIoU的文章服务,其中我经过实验在绝大多数下的效果都要比本文中提到的各种损失效果要好。 

 专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

本文代码地址: 文末提供完整代码块-包括EIoU、CIoU、DIoU等七种损失和其Focus变种


目录

一、本文介绍

 二、各种损失函数的基本原理 

2.1 交集面积和并集面积

2.2 IoU

2.3 SIoU

2.4 WioU

2.5 GIoU

2.6 DIoU

2.7 EIoU

2.8 CIoU

2.9 FocusLoss 

三、EIoU、SIoU、EIoU、FocusIoU等损失函数代码块

3.1 代码一

3.2 代码二 

四、添加EIoU、SIoU、EIoU、FocusIoU等损失函数到模型中

五、总结


 二、各种损失函数的基本原理 

2.1 交集面积和并集面积

在理解各种损失函数之前我们需要先来理解一下交集面积和并集面积,在数学中我们都学习过集合的概念,这里的交集和并集的概念和数学集合中的含义是一样的


2.2 IoU

论文地址:IoU Loss for 2D/3D Object Detectio

适用场景:普通的IoU并没有特定的适用场景

概念: 测量预测边界框和真实边界框之间的重叠度(最基本的边界框损失函数,后面的都是居于其进行计算)。


2.3 SIoU

论文地址:SIoU: More Powerful Learning for Bounding Box Regression

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。

概念: SIoU损失通过融入角度考虑和规模敏感性,引入了一种更为复杂的边界框回归方法,解决了以往损失函数的局限性,SIoU损失函数包含四个组成部分:角度损失、距离损失、形状损失和第四个未指定的组成部分。通过整合这些方面,从而实现更好的训练速度和预测准确性。


2.4 WioU

论文地址WIoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism

适用场景:适用于需要动态调整损失焦点的情况,如不均匀分布的目标或不同尺度的目标检测。

概念:引入动态聚焦机制的IoU变体,旨在改善边界框回归损失。


2.5 GIoU

论文地址:GIoU: A Metric and A Loss for Bounding Box Regression

适用场景:适合处理有重叠和非重叠区域的复杂场景,如拥挤场景的目标检测。

概念: 在IoU的基础上考虑非重叠区域,以更全面评估边界框


2.6 DIoU

论文地址:DIoU: Faster and Better Learning for Bounding Box Regression

适用场景:适用于需要快速收敛和精确定位的任务,特别是在边界框定位精度至关重要的场景。

概念:结合边界框中心点之间的距离和重叠区域。


2.7 EIoU

论文地址:EIoU:Loss for Accurate Bounding Box Regression

适用场景:可用于需要进一步优化边界框对齐和形状相似性的高级场景。

概念:EIoU损失函数的核心思想在于提高边界框回归的准确性和效率。它通过以下几个方面来优化目标检测:

1. 增加中心点距离损失:通过最小化预测框和真实框中心点之间的距离,提高边界框的定位准确性。

2. 考虑尺寸差异:通过惩罚宽度和高度的差异,EIoU确保预测框在形状上更接近真实框。

3. 结合最小封闭框尺寸:将损失函数与包含预测框和真实框的最小封闭框的尺寸相结合,从而使得损失更加敏感于对象的尺寸和位置。

EIoU损失函数在传统IoU基础上增加了这些考量,以期在各种尺度上都能获得更精确的目标定位,尤其是在物体大小和形状变化较大的场景中。


2.8 CIoU

论文地址:CIoU:Enhancing Geometric Factors in Model Learning

适用场景:适合需要综合考虑重叠区域、形状和中心点位置的场景,如复杂背景或多目标跟踪。

概念:综合考虑重叠区域、中心点距离和长宽比。


2.9 FocusLoss 

论文地址:Focal Loss for Dense Object Detection

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。 

Focal Loss由Kaiming He等人在论文《Focal Loss for Dense Object Detection》中提出,旨在解决在训练过程中正负样本数量极度不平衡的问题,尤其是在一些目标检测任务中,背景类别的样本可能远远多于前景类别的样本。

Focal Loss通过修改交叉熵损失,增加一个调整因子这个因子降低了那些已经被正确分类的样本的损失值,使得模型的训练焦点更多地放在难以分类的样本上。这种方式特别有利于提升小目标或者在复杂背景中容易被忽视的目标的检测性能。简而言之,Focal Loss让模型“关注”(或“专注”)于学习那些对提高整体性能更为关键的样本。


三、EIoU、SIoU、EIoU、FocusIoU等损失函数代码块

3.1 代码一

此代码块块的基础版本来源于Github的开源版本,我在其基础上将Inner的思想加入其中形成了各种Inner的思想同时融合各种改良版本的损失函数形成对应版本的InnerIoU、InnerCIoU等损失函数。

import numpy as np
import torch, mathclass WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif xywh:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter/(union + eps), alpha) # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2)) # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

3.2 代码二 

代码块二此处是使用Focus时候需要修改的代码,如果不适用则不需要修改下面的代码,因为利用Focus机制时候返回的类型是元组所以需要额外的处理。 

        if type(iou) is tuple:if len(iou) == 2:# Focus Loss 时返回的是元组类型,进行额外处理loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sumelse:loss_iou = (iou[0] * iou[1] * weight).sum() / target_scores_sumelse:# 正常的损失函数loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum


四、添加EIoU、SIoU、EIoU、FocusIoU等损失函数到模型中

4.1 修改一

第一步我们需要找到如下的文件ultralytics/utils/metrics.py,找到如下的代码,下面的图片是原先的代码部分截图的正常样子,然后我们将整个代码块一将下面的整个方法(这里这是部分截图)内容全部替换


4.2 修改二

第二步我们找到另一个文件如下->"ultralytics/utils/loss.py",我们找到如下的代码块,将代码块二替换其中的第74行,

同时在上面的第73行(我说的我图片这里的不一定代表你那里,替换成如下的形式),按照下面代码设置即可!

        # 想用那个对应的设置为True即可,比如我想用EIoU,那么我只需要把EIoU设置为True,那么此时就是EIoU!xywh=False, GIoU=False, DIoU=False, CIoU=True, EIoU=False, SIoU=False, WIoU=False, Focal=False, ratio=0.75)


4.3 修改三

修改完上面的第二步,我们需要找到如下文件"ultralytics/utils/tal.py",在这个文件中我们找到如下的代码块,我这里已经修改完了,这里的使用保持和修改二一致(这里不要开启Focus的如果步骤二开启这里也不要开启)


五、总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv10改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/42177.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android Init Language自学笔记

Android Init Language由五个元素组成:Acttions、Commands、Services、Options和Imports。 Actions和Services隐式声明了一个新的section。所以的Commands和Options都属于最近声明的section。 Services具有唯一的名称,如果重名会报错。 Actions Acti…

解决Spring Boot中的高可用性设计

解决Spring Boot中的高可用性设计 大家好,我是微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 1. 高可用性设计概述 1.1 什么是高可用性? 高可用性指系统在面对各种故障和异常情况时,仍…

独立开发者系列(22)——API调试工具apifox的使用

接口的逻辑已经实现,需要对外发布接口,而发布接口的时候,我们需要能自己简单调试接口。当然,其实自己也可以写简单的代码调试自己的接口,因为其实就是简单的request请求或者curl库读取,调整请求方式get或者…

如果MySQL出现 “Too many connections“ 错误,该如何解决?

当你想要连接MySQL时出现"Too many connections" 报错的情况下,该如何解决才能如愿以偿呢?都是哥们儿,就教你两招吧! 1.不想重启数据库的情况下 你可以尝试采取以下方法来解决: 增加连接数限制&#xff1a…

RxJava学习记录

文章目录 1. 总览1.1 基本原理1.2 导入包和依赖 2. 操作符2.1 创建操作符2.2 转换操作符2.3 组合操作符2.4 功能操作符 1. 总览 1.1 基本原理 参考文献 构建流:每一步操作都会生成一个新的Observable节点(没错,包括ObserveOn和SubscribeOn线程变换操作…

asp.netWebForm(.netFramework) CSRF漏洞

asp.netWebForm(.netFramework) CSRF漏洞 CSRF(Cross-Site Request Forgery)跨站请求伪造是一种常见的 Web 应用程序安全漏 洞,攻击者通过诱使已认证用户在受信任的网站上执行恶意操作,从而利用用户的身份 执行未经授权的操作。攻…

echarts实现3D饼图

先看下最终效果 实现思路 使用echarts-gl的曲面图&#xff08;surface&#xff09;类型 通过parametric绘制曲面参数实现3D效果 代码实现 <template><div id"surfacePie"></div> </template> <script setup>import {onMounted} fro…

简单的找到自己需要的flutter ui 模板

简单的找到自己需要的flutter ui 模板 网站 https://flutterawesome.com/ 简介 我原本以为会很难用 实际上不错 很简单 打开后界面类似于,右上角可以搜索 点击view github 相当简单 很oks

RabbitMq,通过prefetchCount限制消费并发数

1.问题:项目瓶颈,通过rabbitMq来异步上传图片,由于并发上传的图片过多导致阿里OSS异常, 解决方法:通过prefetchCount限制图片上传OSS的并发数量 2.定义消费者 Component AllArgsConstructor Slf4j public class ReceiveFaceImageEvent {private final UPloadService uploadSe…

【见刊通知】MVIPIT 2023机器视觉、图像处理与影像技术国际会议

MVIPIT 2023&#xff1a;https://ieeexplore.ieee.org/xpl/conhome/10578343/proceeding 入库Ei数据库需等20-50天左右 第二届会议征稿启动&#xff08;MVIPIT 2024&#xff09; The 2nd International Conference on Machine Vision, Image Processing & Imaging Techn…

MacOS和Windows中怎么安装Redis

希望文章能给到你启发和灵感&#xff5e; 如果觉得文章对你有帮助的话&#xff0c;点赞 关注 收藏 支持一下博主吧&#xff5e; 阅读指南 开篇说明一、基础环境说明1.1 硬件环境1.2 软件环境 二、MacOS中Redis的安装2.1 HomeBrew 安装&#xff08;推荐&#xff09;2.2 通过官方…

70.WEB渗透测试-信息收集- WAF、框架组件识别(10)

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 内容参考于&#xff1a; 易锦网校会员专享课 上一个内容&#xff1a;69.WEB渗透测试-信息收集- WAF、框架组件识别&#xff08;9&#xff09; 关于waf相应的识…

arcgis js 4.x实现类似openalayers加载tilewms图层效果

一、普通wms与tilewms区别 相同点&#xff1a;都是加载WMS服务。 不同点&#xff1a;TitleWMS会把当前可视窗口根据网格&#xff08;开发者可以在调用OpenLayers api的时候自定义&#xff09;切分&#xff0c;一片一片地返回回来&#xff0c;在前端进行整合。而ImageWMS则不会…

Springboot 配置 log4j 时的注意事项

感谢博主 https://www.cnblogs.com/fishlittle/p/17950944 依赖 SpringBoot 的 starter 自带的是 logback 日志&#xff0c;若要使用 log4j2 日志&#xff0c;需要引入对应依赖。logback 日志和 log4j2 日志都是对 slf4j 门面的实现&#xff0c;只能存在一个&#xff0c;且必…

江协科技51单片机学习- p25 无源蜂鸣器

&#x1f680;write in front&#x1f680; &#x1f50e;大家好&#xff0c;我是黄桃罐头&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​…

环信IM实现小米、oppo推送详细步骤

本文教大家集成环信IM后如何实现小米、oppo推送。 一、小米推送 步骤一、在小米开放平台创建应用。 在 小米开放平台 创建应用&#xff0c;开启推送服务。详见小米官方网站的 推送服务接入指南。 步骤二、上传推送证书。 注册完成后&#xff0c;需要在环信即时通讯云控制台…

WebSocket 双向通信

WebSocket 是一种在前端开发中用于实现双向通信的网络技术。它与传统的 HTTP 请求-响应模式不同&#xff0c;允许客户端和服务器之间实时、双向的数据传输。 1. 实时性 能够实现数据的即时推送和接收&#xff0c;无需轮询服务器&#xff0c;大大降低了延迟。 2. 双向通信 客…

LeetCode-刷题记录-前缀和合集(本篇blog会持续更新哦~)

一、前缀和&#xff08;Prefix Sum&#xff09;算法概述 前缀和算法通过预先计算数组的累加和&#xff0c;可以在常数时间内回答多个区间和相关的查询问题&#xff0c;是解决子数组和问题中的重要工具。 它的基本思想是通过预先计算和存储数组的前缀和&#xff0c;可以在 O(1)…

初步理解六__《面向互联网大数据的威胁情报 并行挖掘技术研究 》

初步理解 六 STIX 提出了一种标准化的网络威胁情报格式(Structured Threat Information eXpression, STIX) gtp STIX&#xff08;Structured Threat Information eXpression&#xff09;是一种用于标准化描述和共享网络威胁情报的格式和语言。它的设计目标是提供一个通用的…

7.8作业

一、思维导图 二、 1】按值修改 2】按值查找&#xff0c;返回当前节点的地址 &#xff08;先不考虑重复&#xff0c;如果有重复&#xff0c;返回第一个&#xff09; 3】反转 4】销毁链表 //按值修改 int value_change(linklistptr H,datatype e,int value) {if(HNULL||empty(H…