YOLOv10改进 | 损失函数篇 | InnerIoU、InnerSIoU、InnerWIoU、FocusIoU等损失函数

一、本文介绍

本文给大家带来的是YOLOv10最新改进,为大家带来最近新提出的InnerIoU的内容同时用Inner的思想结合SIoU、WIoU、GIoU、DIoU、EIOU、CIoU等损失函数,形成 InnerIoU、InnerSIoU、InnerWIoU、等新版本损失函数,同时还结合了Focus和AIpha思想形成的新的损失函数,其中Inner的主要思想是:引入了不同尺度的辅助边界框来计算损失,(该方法在处理非常小目标的检测任务时表现出良好的性能(但是在其它的尺度检测时也要比普通的损失要好)文章会详细探讨这些损失函数如何提高YOLOv10在各种检测任务中的性能,包括提升精度、加快收敛速度和增强模型对复杂场景的适应性。

 专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

目录

一、本文介绍

二、各种损失函数的基本原理 

2.1 交集面积和并集面积

2.2 InnerIoU的思想 

2.2.1结合InnerIoU各种损失函数的效果图 

2.3 InnerSIoU

2.4 InnerWioU

2.5 InnerGIoU

2.6 InnerDIoU

2.7 InnerEIoU

2.8 InnerCIoU

2.9 FocusLoss 

三、InnerIoU等损失函数代码块

3.1 代码一

四、添加InnerIoU等损失函数到模型中

4.1 步骤一 

4.2 步骤二

4.3 步骤三 

4.4 什么时候使用损失函数改进

五、本文总结


二、各种损失函数的基本原理 

论文地址:官方Inner-IoU论文地址点击即可跳转

官方代码地址官方代码地址-官方只放出了两种结合方式CIoU、SIoU

本文改进地址: 文末提供完整代码块-包括InnerEIoU、InnerCIoU、InnerDIoU等七种结合方式和其Focus变种


2.1 交集面积和并集面积

在理解各种损失函数之前我们需要先来理解一下交集面积和并集面积,在数学中我们都学习过集合的概念,这里的交集和并集的概念和数学集合中的含义是一样的。


2.2 InnerIoU的思想 

Inner-IoU(内部交并比)的主要思想是:改进目标检测中边界框回归(BBR)的准确性,特别是在处理高度重叠的目标时。传统的IoU(交并比)计算方法考虑了预测边界框和真实边界框的整体重叠区域,而Inner-IoU则专注于边界框内部的重叠部分。它通过引入辅助边界框,这些辅助框是原始边界框的缩小版本,来计算损失函数。

这种方法的优点包括:

  1. 针对性优化:Inner-IoU通过关注边界框的核心部分而非整体,提供了对重叠区域更加精确的评估。
  2. 调整尺度:通过控制辅助边界框的大小,Inner-IoU允许对不同的数据集和检测任务进行微调。
  3. 提高泛化能力:实验证明,Inner-IoU在不同的数据集上显示出比传统IoU更好的泛化性能。
  4. 处理高低IoU样本:对于高IoU样本,使用较小的辅助框可以加速模型学习;而对于低IoU样本,使用较大的辅助框可以改善回归性能。

总结:Inner-IoU是一种更细致、更专注于目标中心的性能评估指标,它通过辅助框的尺度调整提高了目标检测任务的精确度和效率。

2.2.1结合InnerIoU各种损失函数的效果图 

上面的图片展示了CIoU 和 Inner-CIoU 方法。图中从左至右分别表示 CIoU 方法,以及不同比例(0.7、0.75 和 0.8)的 Inner-CIoU 方法的检测结果 

这个图片可以看出这个Innner的思想在小目标检测的时候效果能够达到极致(最适用于小范围但是其它的情况也能够有效但是小目标是效果最好的情景

PS:下面介绍的是融合的各种思想就是将其中的IoU替换为我们上面求出来的InnerIoU即可和其中的参数也替换为InnerIoU的思想,其中各种损失函数的本身思想并没有改变,只是改变了其中的 参数。


2.3 InnerSIoU

论文地址:SIoU: More Powerful Learning for Bounding Box Regression

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。

概念:SIoU损失通过融入角度考虑和规模敏感性,引入了一种更为复杂的边界框回归方法,解决了以往损失函数的局限性,SIoU损失函数包含四个组成部分:角度损失、距离损失、形状损失和第四个未指定的组成部分。通过整合这些方面,从而实现更好的训练速度和预测准确性。


2.4 InnerWioU

论文地址:WIoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism

适用场景:适用于需要动态调整损失焦点的情况,如不均匀分布的目标或不同尺度的目标检测。

概念:引入动态聚焦机制的IoU变体,旨在改善边界框回归损失。


2.5 InnerGIoU

论文地址:GIoU: A Metric and A Loss for Bounding Box Regression

适用场景:适合处理有重叠和非重叠区域的复杂场景,如拥挤场景的目标检测。

概念:在IoU的基础上考虑非重叠区域,以更全面评估边界框


2.6 InnerDIoU

论文地址:DIoU: Faster and Better Learning for Bounding Box Regression

适用场景:适用于需要快速收敛和精确定位的任务,特别是在边界框定位精度至关重要的场景。

概念:结合边界框中心点之间的距离和重叠区域。


2.7 InnerEIoU

论文地址:EIoU:Loss for Accurate Bounding Box Regression

适用场景:可用于需要进一步优化边界框对齐和形状相似性的高级场景。

概念:EIoU损失函数的核心思想在于提高边界框回归的准确性和效率。它通过以下几个方面来优化目标检测:

1. 增加中心点距离损失:通过最小化预测框和真实框中心点之间的距离,提高边界框的定位准确性。

2. 考虑尺寸差异:通过惩罚宽度和高度的差异,EIoU确保预测框在形状上更接近真实框。

3. 结合最小封闭框尺寸:将损失函数与包含预测框和真实框的最小封闭框的尺寸相结合,从而使得损失更加敏感于对象的尺寸和位置。

EIoU损失函数在传统IoU基础上增加了这些考量,以期在各种尺度上都能获得更精确的目标定位,尤其是在物体大小和形状变化较大的场景中。


2.8 InnerCIoU

论文地址:CIoU:Enhancing Geometric Factors in Model Learning

适用场景:适合需要综合考虑重叠区域、形状和中心点位置的场景,如复杂背景或多目标跟踪。

概念:综合考虑重叠区域、中心点距离和长宽比。


2.9 FocusLoss 

论文地址:Focal Loss for Dense Object Detection

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。 

Focal Loss由Kaiming He等人在论文《Focal Loss for Dense Object Detection》中提出,旨在解决在训练过程中正负样本数量极度不平衡的问题,尤其是在一些目标检测任务中,背景类别的样本可能远远多于前景类别的样本。

Focal Loss通过修改交叉熵损失,增加一个调整因子这个因子降低了那些已经被正确分类的样本的损失值,使得模型的训练焦点更多地放在难以分类的样本上。这种方式特别有利于提升小目标或者在复杂背景中容易被忽视的目标的检测性能。简而言之,Focal Loss让模型“关注”(或“专注”)于学习那些对提高整体性能更为关键的样本。


三、InnerIoU等损失函数代码块

3.1 代码一

此代码块块的基础版本来源于Github的开源版本,我在其基础上将Inner的思想加入其中形成了各种Inner的思想同时融合各种改良版本的损失函数形成对应版本的InnerIoU、InnerCIoU等损失函数。

import numpy as np
import torch
import math
from ultralytics.utils import opsclass WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, EIoU=False, SIoU=False, WIoU=False, ShapeIoU=False,hw=1, mpdiou=False, Inner=False, alpha=1, ratio=0.7, eps=1e-7, scale=0.0):"""Calculate Intersection over Union (IoU) of box1(1, 4) to box2(n, 4).Args:box1 (torch.Tensor): A tensor representing a single bounding box with shape (1, 4).box2 (torch.Tensor): A tensor representing n bounding boxes with shape (n, 4).xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in(x1, y1, x2, y2) format. Defaults to True.GIoU (bool, optional): If True, calculate Generalized IoU. Defaults to False.DIoU (bool, optional): If True, calculate Distance IoU. Defaults to False.CIoU (bool, optional): If True, calculate Complete IoU. Defaults to False.EIoU (bool, optional): If True, calculate Efficient IoU. Defaults to False.SIoU (bool, optional): If True, calculate Scylla IoU. Defaults to False.eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.Returns:(torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags."""if Inner:if not xywh:box1, box2 = ops.xyxy2xywh(box1), ops.xyxy2xywh(box2)(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)b1_x1, b1_x2, b1_y1, b1_y2 = x1 - (w1 * ratio) / 2, x1 + (w1 * ratio) / 2, y1 - (h1 * ratio) / 2, y1 + (h1 * ratio) / 2b2_x1, b2_x2, b2_y1, b2_y2 = x2 - (w2 * ratio) / 2, x2 + (w2 * ratio) / 2, y2 - (h2 * ratio) / 2, y2 + (h2 * ratio) / 2# Intersection areainter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)# Union Areaunion = w1 * h1 * ratio * ratio + w2 * h2 * ratio * ratio - inter + epsiou = inter / union# Get the coordinates of bounding boxeselse:if xywh:  # transform from xywh to xyxy(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_else:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps# Intersection areainter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)# Union Areaunion = w1 * h1 + w2 * h2 - inter + eps# IoUiou = inter / unionif CIoU or DIoU or GIoU or EIoU or SIoU or ShapeIoU or mpdiou or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or mpdiou or WIoU or ShapeIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squaredrho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha = v / (v - iou + (1 + eps))return iou - (rho2 / c2 + v * alpha)  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = cw ** 2 + epsch2 = ch ** 2 + epsreturn iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIoUelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)return iou - 0.5 * (distance_cost + shape_cost) + eps # SIoUelif ShapeIoU:#Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distanceww = 2 * torch.pow(w2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))hh = 2 * torch.pow(h2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex widthch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex heightc2 = cw ** 2 + ch ** 2 + eps                            # convex diagonal squaredcenter_distance_x = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2) / 4center_distance_y = ((b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4center_distance = hh * center_distance_x + ww * center_distance_ydistance = center_distance / c2#Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shape    #Shape-Shapeomiga_w = hh * torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = ww * torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)return iou - distance - 0.5 * shape_costelif mpdiou:d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2return iou - d1 / hw.unsqueeze(1) - d2 / hw.unsqueeze(1)  # MPDIoUelif WIoU:self = WIoU_Scale(1 - iou)dist = getattr(WIoU_Scale, '_scaled_loss')(self)return iou * dist  # WIoU https://arxiv.org/abs/2301.10051return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areareturn iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdfreturn iou  # IoU


四、添加InnerIoU等损失函数到模型中

4.1 步骤一 

上面的代码我们首先找到'ultralytics/utils/metrics.py'文件,然后其中有一个完全同名字的方法,原始样子如下,我们将我们的代码完整替换掉这个代码,记得是全部替换这个方法内的代码。


4.2 步骤二

替换成功后,我们找到另一个文件'ultralytics/utils/loss.py'然后找到如下一行代码原始样子下面的图片然后用我给的代码替换掉其中的红框内的一行即可。

        iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask],xywh=False, GIoU=False, DIoU=False, CIoU=False, EIoU=False, SIoU=False,WIoU=False, ShapeIoU=False Inner=False,ratio=0.75, eps=1e-7, scale=0.0)

上面的代码我来解释一下,我把所有的能选用的参数都写了出来,其中IoU很好理解了,对应的参数设置为True就是使用的对应的IoU包括本文的IoU,需要注意的是Inner这个参数,比如我Inner设置为True然后Shape_IoU也设置为True那么此时使用的就是Inner_Shape_IoU,其它的都是,其中ratio和eps是inner的参数大家可以自己尝试我这里定义了两个基本值。 

替换完后的样子如下->

4.3 步骤三 

我们还需要修改一处,找到如下的文件''ultralytics/utils/tal.py''然后找到其中下面图片的代码,用我给的代码替换红框内的代码。

        overlaps[mask_gt] = bbox_iou(gt_boxes, pd_boxes, xywh=False, GIoU=False, DIoU=False, CIoU=False,EIoU=False, SIoU=False, WIoU=True, ShapeIoU=False, Inner=False,ratio=0.7, eps=1e-7, scale=0.0).squeeze(-1).clamp_(0)

此处和loss.py里面的最好是使用同一个参数。


4.4 什么时候使用损失函数改进

在这里多说一下,就是损失函数的使用时间,当我们修改模型的时候,损失函数是作为一种保底的存在,就是说当其它模型结构都修改完成了,已经无法在提升精度了,此时就可以修改损失函数了,不要上来先修改损失函数,当然这是我个人的建议,具体还是由大家自己来选择。

YOLOv10调用YOLOv8损失函数计算修改了YOLOv8的损失函数即代表修改了YOLOv10! 


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv10改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 专栏回顾:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/42146.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode42(接雨水)[三种解法:理解动态规划,双指针,单调栈]

接雨水 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 这是一道困难题,难度确实有点层次.我们先来朴素思想走一波. 要求能接多少雨水,我们可以具化到每个硅谷,每个硅谷能存多少雨水,那么答案就是每个…

PDA:Prompt-based Distribution Alignment for Unsupervised Domain Adaptation

文章汇总 式中, y s y^s ys表示源域数据的one-hot ground-truth, K K K为类数, w i w_i wi​和 z ~ s \tilde{z}_s z~s​分别表示源域经过提示调优的最终文本表示和最终图像表示的第 i i i类。 同理,为了进一步利用目标领域的数据…

防火墙详解(USG6000V)

0、防火墙组网模式 防火墙能够工作在三种模式下分别是路由模式、透明模式、旁路检测模式、混合模式 0.1、路由模式 路由模式:防火墙全部以第三层对外连接,即接口具有IP 地址。一般都用在防火墙是边界的场景下 防火墙需要的部署/配置: 接…

【入门篇】STM32寻址范围(更新中)

写在前面 STM32的寻址范围涉及存储器映射和32位地址线的使用。并且STM32的内存地址访问是按字节编址的,即每个存储单元是1字节(8位)。 一、寻址大小与范围 地址线根数 地址编号(二进制) 地址编号数(即内存大小) <

实现基于Elasticsearch的搜索服务

实现基于Elasticsearch的搜索服务 大家好&#xff0c;我是微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 1. Elasticsearch简介 Elasticsearch是一个开源的分布式搜索引擎&#xff0c;提供强大的全文搜索和分析功能。本文…

10、DDD分层架构

微服务架构模型有很多种&#xff0c;例如洋葱架构、CQRS和六边形架构等。虽然这些架构模式提出的时代和背景不同&#xff0c;但其核心理念都是为了设计出“高内聚&#xff0c;低耦合”的微服务&#xff0c;轻松实现微服务的架构演进。DDD分层架构的出现&#xff0c;使微服务的架…

什么是ThreadLocal以及内存泄漏问题、hash冲突问题

ThreadLocal是什么 ThreadLocal类用来提供线程内部的局部变量 它主要有三大特性&#xff1a; 线程安全: 在多线程并发的场景下保证线程安全传递数据&#xff1a;通过ThreadLocal在同一线程传递公共变量线程隔离&#xff1a;每个线程的变量都是独立的&#xff0c;不会互相影响…

这次让我们从几个点认识一下Mysql的Innodb

MySQL 的 InnoDB 存储引擎是 MySQL 默认和最常用的存储引擎之一。它主要关注的是高可靠性、性能以及完整的事务支持。以下是对 InnoDB 存储引擎的详细介绍&#xff1a; 1. 数据库特性 1.1 事务支持 InnoDB 是完全支持事务的存储引擎&#xff0c;支持四种主要的事务隔离级别&…

【uniapp-ios】App端与webview端相互通信的方法以及注意事项

前言 在开发中&#xff0c;使用uniapp开发的项目开发效率是极高的&#xff0c;使用一套代码就能够同时在多端上线&#xff0c;像笔者之前写过的使用Flutter端和webview端之间的相互通信方法和问题&#xff0c;这种方式本质上实际上是h5和h5之间的通信&#xff0c;网上有非常多…

ios身份证实名认证接口开发示例助力电商物流实名认证

为了更好的利用货车资源&#xff0c;也方便企业正常的运送货物&#xff0c;“互联网电商”平台可谓风起云涌。货车司机和有发货需求的人们可以在物流平台注册&#xff0c;货车司机接单为有运送需求的用户提供有偿货运服务。那么&#xff0c;如何让企业放心的将货物安心的交予货…

物联网实训室建设可行性报告

一、建设物联网实训室的目的和意义 随着信息技术的快速发展&#xff0c;物联网&#xff08;IoT&#xff09;已成为推动社会进步和经济发展的关键技术之一。物联网技术的集成应用&#xff0c;不仅能够提高生产效率&#xff0c;还能促进智慧城市、智能家居、智能农业等多个领域的…

python04——类(基础new)

类其实也是一种封装的思想&#xff0c;类就是把变量、方法等封装在一起&#xff0c;然后可以通过不同的实例化对其进行调用操作。 1.类的定义 class 类名&#xff1a; 变量a def __init__ (self,参数2&#xff0c;参数2...)&#xff1a;初始化函数&#xff01;&#xff01;&…

vivado DELAY_VALUE_XPHY、DIFF_TERM

延迟_值_XPHY PORT对象上的DELAY_VALUE_XPHY属性指定要添加的延迟量 Versal XPHY逻辑接口的输入或输出路径。在的早期阶段 opt_design在重新生成高级I/O向导IP时 DELAY_VALUE_XPHY值将从PORT复制到的XPHY实例上 输入或输出路径。Vivado设计套件中存在DRCs&#xff0c;以确保 DE…

简单实现联系表单Contact Form自动发送邮件

如何实现简单Contact Form自动邮件功能&#xff1f;怎样简单设置&#xff1f; 联系表单不仅是访客与网站所有者沟通的桥梁&#xff0c;还可以收集潜在客户的信息&#xff0c;从而推动业务的发展。AokSend将介绍如何简单实现一个联系表单&#xff0c;自动发送邮件的过程&#x…

java Collections类介绍

Java 的 java.util.Collections 类提供了一组静态方法&#xff0c;用于操作或返回集合&#xff08;如列表、集合和映射&#xff09;。Collections 类是一个实用工具类&#xff0c;旨在为集合提供便捷的算法和操作。以下是对 Collections 类及其常用方法的介绍。 常用方法总结 …

【游戏客户端】大话slg玩法架构(一)滚动基类

【游戏客户端】大话slg玩法架构&#xff08;一&#xff09;滚动基类 大家好&#xff0c;我是Lampard家杰~~ 今天我们兑现诺言&#xff0c;给大家分享SLG玩法的实现j架构&#xff0c;关于SLG玩法的介绍可以参考这篇上一篇文章&#xff1a;【游戏客户端】制作率土之滨Like玩法 PS…

保险理论与实践

《保险理论与实践》是由中国保险学会主办的学术集刊&#xff0c;于2016年1月正式创办&#xff0c;致力于发表权威、严谨、高质量的理论研究、政策研究和实务研究成果&#xff0c;强调学术性与政策性、理论性与实践性的有机结合。本刊由中国金融出版社公开出版&#xff0c;每月下…

postmessage()在同一域名下,传递消息给另一个页面

这里是同域名下&#xff0c;getmessage.html&#xff08;发送信息&#xff09;传递消息给index.html&#xff08;收到信息&#xff0c;并回传收到信息&#xff09; index.html页面 <!DOCTYPE html> <html><head><meta http-equiv"content-type"…

机器学习统计学基础 - 最大似然估计

最大似然估计&#xff08;Maximum Likelihood Estimation, MLE&#xff09;是一种常用的参数估计方法&#xff0c;其基本原理是通过最大化观测数据出现的概率来寻找最优的参数估计值。具体来说&#xff0c;最大似然估计的核心思想是利用已知的样本结果&#xff0c;反推最有可能…

Java并发编程工具包(JUC)详解

在现代软件开发中&#xff0c;多线程编程是一个不可避免的话题。为了更好地管理和利用多线程&#xff0c;Java提供了一个强大的工具包——java.util.concurrent&#xff08;简称JUC&#xff09;。JUC包含了许多用于并发编程的类和接口&#xff0c;帮助开发者高效、安全地处理线…