

 1
1
 00:00:04,710 --> 00:00:08,900
 这是划分,下一个是有序对的概念
2
 00:00:11,720 --> 00:00:13,800
 我们知道集合是不分顺序的
3
 00:00:15,090 --> 00:00:18,200
 我们花括号来代表集合的话
4
 00:00:18,210 --> 00:00:21,000
 AB花括号等于BA花括号
5
 00:00:23,390 --> 00:00:27,850
 如果要表达两个元素有顺序的
6
 00:00:29,840 --> 00:00:34,680
 我们可以用括号来表达,AB括号
7
 00:00:35,810 --> 00:00:38,430
 表示一对有顺序的元素
8
 00:00:38,800 --> 00:00:41,930
 那么这个A我们就叫第一个坐标
9
 00:00:42,550 --> 00:00:43,930
 B就是第二个坐标
10
 00:00:46,670 --> 00:00:48,390
 那么AB就不等于BA了
11
 00:00:48,640 --> 00:00:51,970
 因为它有序的,有序对,有的表达
12
 00:00:52,500 --> 00:00:53,890
 表达是一个尖括号
13
 00:00:55,930 --> 00:00:56,960
 这也没有统一
14
 00:00:57,130 --> 00:00:59,920
 表达尖括号的比较多
15
 00:01:00,130 --> 00:01:01,960
 但我们这里用括号来表达
16
 00:01:06,920 --> 00:01:07,880
 那么意味着什么
17
 00:01:10,270 --> 00:01:11,470
 A不等于B的话
18
 00:01:14,100 --> 00:01:20,640
 那么,这两个对,AB对跟BA对
19
 00:01:20,650 --> 00:01:23,060
 它不能够相等
20
 00:01:23,190 --> 00:01:26,830
 它不是一个对,因为两边不相等
21
 00:01:28,410 --> 00:01:29,330
 或者说
22
 00:01:31,210 --> 00:01:33,090
 这两个对要是相等的话
23
 00:01:34,130 --> 00:01:34,760
 意味着什么
24
 00:01:34,770 --> 00:01:36,150
 第1坐标相等
25
 00:01:36,160 --> 00:01:38,110
 而且第2坐标也要相等
26
 00:01:38,120 --> 00:01:46,620
 a=c,而且b=d,顺序是有意义的
27
 00:01:47,860 --> 00:01:51,780
 或者说ab≠cd的话
28
 00:01:51,790 --> 00:01:56,650
 意味着,要么是a≠c,或者是b≠d
29
 00:01:56,660 --> 00:01:59,410
 或者两个都不等
30
 00:01:59,500 --> 00:02:00,050
 都有可能
31
 00:02:01,570 --> 00:02:06,190
 你看,这里是与,等的时候要与,不等就或
32
 00:02:06,200 --> 00:02:10,380
 有序对
33
 00:02:13,350 --> 00:02:17,740
 那么这里还有另外一个概念
34
 00:02:17,750 --> 00:02:20,780
 取第1坐标,π的符号
35
 00:02:21,510 --> 00:02:25,980
 π的符号,π1(a,b)就取a,第1坐标
36
 00:02:26,190 --> 00:02:28,780
 有序对的第1坐标,也就是a
37
 00:02:29,280 --> 00:02:33,130
 从一个有序对提炼出一个元素来
38
 00:02:33,540 --> 00:02:34,850
 a,然后π2
39
 00:02:34,860 --> 00:02:39,500
 就是b,这是有序对的概念
1
 00:00:00,240 --> 00:00:02,000
 有了有序对的概念
2
 00:00:02,010 --> 00:00:05,400
 我们来看笛卡尔积的概念
3
 00:00:07,490 --> 00:00:08,180
 Cartesian Product
4
 00:00:08,730 --> 00:00:18,540
 集合A乘集合B,就是A和B的笛卡尔积
5
 00:00:21,290 --> 00:00:22,540
 就可以看作是什么
6
 00:00:24,170 --> 00:00:27,760
 从A里面取一个元素
7
 00:00:28,420 --> 00:00:29,820
 B里面取一个元素
8
 00:00:31,020 --> 00:00:33,750
 组成的有序对的集合
9
 00:00:36,900 --> 00:00:41,290
 比如说,这里,A,123,B,34
10
 00:00:43,020 --> 00:00:45,490
 从A里面选择第一坐标
11
 00:00:45,890 --> 00:00:47,410
 从B里面选择第二坐标
12
 00:00:47,420 --> 00:00:52,520
 来构造有序对的集合
13
 00:00:53,300 --> 00:00:54,100
 那就有多少个
14
 00:00:54,110 --> 00:00:59,100
 这是3,这个是2个
15
 00:00:59,230 --> 00:01:00,660
 A乘B就6个了
16
 00:01:00,670 --> 00:01:08,670
 13,14,23,24,33,34,A乘B
17
 00:01:10,040 --> 00:01:11,960
 反过来B乘A就是
18
 00:01:12,600 --> 00:01:16,130
 31,32,33,41,42,43
19
 00:01:16,140 --> 00:01:18,330
 这两个是不一样的
20
 00:01:19,960 --> 00:01:21,280
 这两个不一样的
21
 00:01:24,580 --> 00:01:26,070
 因为是有序对
22
 00:01:26,760 --> 00:01:28,760
 31跟13不是一个东西了