网站建设常用的英文电商首页模板网站
网站建设常用的英文,电商首页模板网站,关于我们做网站,有了域名 建设自己的网站介绍#xff1a; Keras Tuner是一种用于优化Keras模型超参数的开源Python库。它允许您通过自动化搜索算法来寻找最佳的超参数组合#xff0c;以提高模型的性能。Keras Tuner提供了一系列内置的超参数搜索算法#xff0c;如随机搜索、网格搜索、贝叶斯优化等。它还支持自定义…介绍 Keras Tuner是一种用于优化Keras模型超参数的开源Python库。它允许您通过自动化搜索算法来寻找最佳的超参数组合以提高模型的性能。Keras Tuner提供了一系列内置的超参数搜索算法如随机搜索、网格搜索、贝叶斯优化等。它还支持自定义搜索空间和搜索算法。通过使用Keras Tuner您可以更轻松地优化模型的性能节省调参的时间和精力。 数据
from tensorflow.keras.datasets import fashion_mnist
(x_train, y_train), (x_test, y_test) fashion_mnist.load_data()
Label Description
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot
import matplotlib.pyplot as plt
%matplotlib inlineprint(y_test[0])
plt.imshow(x_test[0], cmapgray)
#each having 1 channel (grayscale, it would have been 3 in the case of color, 1 each for Red, Green and Blue) 建模
x_train x_train.reshape(-1, 28, 28, 1)
x_test x_test.reshape(-1, 28, 28, 1) from tensorflow import keras
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Activation
import os
os.environ[KMP_DUPLICATE_LIB_OK]TRUEmodel keras.models.Sequential()model.add(Conv2D(32, (3, 3), input_shapex_train.shape[1:]))
model.add(Activation(relu))
model.add(MaxPooling2D(pool_size(2, 2)))model.add(Conv2D(32, (3, 3)))
model.add(Activation(relu))
model.add(MaxPooling2D(pool_size(2, 2)))model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectorsmodel.add(Dense(10))
model.add(Activation(softmax))model.compile(optimizeradam,losssparse_categorical_crossentropy,metrics[accuracy])model.fit(x_train, y_train, batch_size64, epochs1, validation_data (x_test, y_test)) Keras Tuner
from kerastuner.tuners import RandomSearch
from kerastuner.engine.hyperparameters import HyperParametersdef build_model(hp): # random search passes this hyperparameter() object model keras.models.Sequential()model.add(Conv2D(hp.Int(input_units,min_value32,max_value256,step32), (3, 3), input_shapex_train.shape[1:]))model.add(Activation(relu))model.add(MaxPooling2D(pool_size(2, 2)))for i in range(hp.Int(n_layers, 1, 4)): # adding variation of layers.model.add(Conv2D(hp.Int(fconv_{i}_units,min_value32,max_value256,step32), (3, 3)))model.add(Activation(relu))model.add(Flatten()) model.add(Dense(10))model.add(Activation(softmax))model.compile(optimizeradam,losssparse_categorical_crossentropy,metrics[accuracy])return modeltuner RandomSearch(build_model,objectiveval_accuracy,max_trials1, # how many model variations to test?executions_per_trial1, # how many trials per variation? (same model could perform differently)directoryLesson56,project_nameOptimise)tuner.search(xx_train,yy_train,verbose1, # just slapping this here bc jupyter notebook. The console out was getting messy.epochs1,batch_size64,#callbacks[tensorboard], # if you have callbacks like tensorboard, they go here.validation_data(x_test, y_test)) tuner.results_summary()
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/86056.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!