【EDA软件】【联合Modelsim仿真使用方法】

背景

业界EDA工具仿真功能是必备的,例如Vivado自带仿真工具,且无需联合外部仿真工具,例如MoodelSim。 FUXI工具仿真功能需要联合Modelsim,才能实现仿真功能。

方法一:FUXI联合ModelSim

1 添加testbench文件

新建top_tb.v文件,可以新建一个sim文件夹,把tb文件保存在里面。

Porject Manager->Add Sources->Add or create simulation sources->Create File,创建top_tb.v,创建后界面如图1:

图1

2 编写仿真代码并保存

top.v只输出了led这个信号,所以仿真代码比较简单,如图1,top.v代码如下所示:

// ============================================================
//
// Company:
// Engineer:
//
// Create Date: 05/14/2025 10:43:05   
// Design Name:
// Module Name: top
// Project Name:
// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
// ============================================================
module top #(parameter  ADDR_WIDTH   = 10     ,parameter  DATA_WIDTH   = 16
)(output  reg     led
);localparam  DEPTH = (1 << ADDR_WIDTH);
localparam  CNT_THD = 11'd10;wire                        inner_osc_clk               ; // 80MHZ
wire                        mcu_clk                     ;
wire                        fpga_clk                    ;
wire                        pll_locked                  ;
wire                        sys_rst_n                   ;
wire                        por_locked                  ;wire                        clk                         ;
wire                        rst_n                       ;wire                        we                          ;
wire    [ADDR_WIDTH-1:0]    addr                        ;
wire    [DATA_WIDTH-1:0]    d_data                      ;
wire    [DATA_WIDTH-1:0]    q_data                      ;reg     [DATA_WIDTH-1:0]    memory      [DEPTH-1:0]     ;
reg     [DATA_WIDTH-1:0]    wr_data                     ;
reg     [DATA_WIDTH-1:0]    rd_data                     ;
reg     [ADDR_WIDTH-1:0]    wr_addr                     ;
reg     [ADDR_WIDTH-1:0]    rd_addr                     ;
wire                        wr_en                       ;
wire                        rd_en                       ;reg     [10:0]              wr_cnt                      ;
reg     [10:0]              rd_cnt                      ;reg                         we_1ff                      ;
reg                         rd_en_1ff                   ;oscillator_v1 u_oscillator_v1(.clkout     (  inner_osc_clk    )
);pll_v1 u_pll_v1(.clkin0     (   inner_osc_clk   ), // i.locked     (   pll_locked      ), // o.clkout0    (   fpga_clk        ), // o.clkout1    (                   )  // o
);por_v1_1 u_por_v1_1(.O          (   por_locked      )
);assign  sys_rst_n = pll_locked & por_locked;assign  clk = fpga_clk;
assign  rst_n = sys_rst_n;/*First Write*/
always @ (posedge clk or negedge rst_n) beginif (!rst_n) beginwr_cnt <= 11'd0;endelse if (wr_cnt < CNT_THD) beginwr_cnt <= wr_cnt + 1'b1;endelse;
end/*Write Full, then Read*/
always @ (posedge clk or negedge rst_n) beginif (!rst_n) beginrd_cnt <= 11'd0;endelse if (rd_en & (rd_cnt < CNT_THD)) beginrd_cnt <= rd_cnt + 1'b1;endelse;
endassign we = wr_cnt < CNT_THD ? 1'b1 : 1'b0;assign  wr_en = (we & (wr_cnt < CNT_THD)) ? 1'b1 : 1'b0;
assign  rd_en = ((~we) & (rd_cnt < CNT_THD)) ? 1'b1 : 1'b0;/*Memory Write Address Option*/
always @ (posedge clk or negedge rst_n) beginif (!rst_n) beginwr_addr <= {ADDR_WIDTH{1'b0}};endelse if (wr_en) beginwr_addr <= wr_addr + 1'b1;endelse;
end/*Memory Read Address Option*/
always @ (posedge clk or negedge rst_n) beginif (!rst_n) beginrd_addr <= {ADDR_WIDTH{1'b0}};endelse if (rd_en) beginrd_addr <= rd_addr + 1'b1;endelse;
end/*Set Write Data Value*/
always @ (posedge clk or negedge rst_n) beginif (!rst_n) beginwr_data <= {DATA_WIDTH{1'b0}};endelse if (wr_en) beginwr_data <= wr_data + 1'b1;endelse;
end/*Memory Write Data Option*/
always @ (posedge clk or negedge rst_n) begin : MEM_WRITEinteger i;if (!rst_n) beginfor (i = 0; i < DEPTH; i = i + 1) beginmemory[i] <= {DATA_WIDTH{1'b0}};endendelse if (wr_en) beginmemory[wr_addr] <= wr_data;endelse;
end/*Memory Read Data Option*/
always @ (posedge clk or negedge rst_n) beginif (!rst_n) beginrd_data <= {DATA_WIDTH{1'b0}};endelse if (rd_en) beginrd_data <= memory[rd_addr];endelse;
endalways @ (posedge clk or negedge rst_n) beginif(!rst_n) beginwe_1ff <= 1'b0;rd_en_1ff <= 1'b0;endelse beginwe_1ff <= we;rd_en_1ff <= rd_en;end
endalways @ (posedge clk or negedge rst_n) beginif(!rst_n) beginled <= 1'b1;endelse if (we) beginled <= 1'b0;endelse if ((~we_1ff) & rd_en_1ff) beginif (&(rd_data ^~ q_data)) beginled <= 1'b1;endelse beginled <= 1'b0;endend
endassign d_data = wr_data;
assign addr = we ? wr_addr : rd_addr;
assign ce = ((wr_cnt < CNT_THD) || (rd_cnt < CNT_THD)) ? 1'b1 : 1'b0;emb_v1 emb_v1_SP (.clk        (   clk             ),.rstn       (   rst_n           ),.ce         (   ce              ), // i.we         (   we              ), // i.a          (   addr            ), // i.d          (   d_data          ), // i.q          (   q_data          )  // o
);endmodule

以上代码比较简单,通过寄存器搭建Memory,实现单端口RAM,以此验证单端口RAM IP。

3 设置仿真内容

3.1 设置Modelsim路径

Options->Simulation->ModelSim Path,路径为Modelsim的安装路径,一般为XXXX\Modelsim_10.5\win64;

3.2 设置Test Bench的Module name

Options->Simulation->ModelSim Path->Top Module Name of Test Bench,填写Module name;

3.3 设置Design Top的Module name

Options->Simulation->ModelSim Path->Instance Name of Design Top Module,填写Module name;

3.4 设置Test Bench Files

Options->Simulation->ModelSim Path->Test Bench Files,添加编写的仿真文件。

3.5 设置Modelsim *.do File

Options->Simulation->ModelSim Path->Modelsim *.do File,添加*.do文件。

暂时不好使,不推荐使用。

设置结果如图2:

图2

4 开始仿真

Flow->Simulation->RTL Simulation,最后点击RTL Simulation,如图3,开始仿真。

图3

自动会联合Modelsim工具,并弹出Modelsim的工具界面。

5 缺点

5.1 弹出界面后,需要手动进行run -all或者点击按钮,且没有固定的仿真时间,需要手动停止;

5.2 弹出界面只有top_tb的信号,需要手动自行添加信号,再运行;

5.3 修改文件需要从新执行4,比较浪费时间。

6 优点

FUXI可以很快的检查出文件的语法错误。

方法二:脚本构建 推荐

与top_tb.v同级目录下,添加三种文件,如图4:

图4

1 files.f 

添加需要编译仿真的testbench、 DUT(RTL)文件

内容如下:

top_tb.v
//rtl 仿真
D:/02_Fuxi/2025-03-28-win64-rel-99/data/lib/p0_sim.v
../src/ip/pll_v1.v
../src/ip/por_v1_1.v
../src/ip/oscillator_v1.v
../src/ip/emb_v1.v
../src/top.v

以上涉及1个问题,需要知道仿真模型;这个后续罗列出来。

2 start.do

汇总编译、波形设置的命令

#1 Create and Map the work lib
vlib work
vmap work work#2  Now compile all the files
vlog -64 -sv +acc -incr +define+SIM -timescale 1ns/1ns -work work -f files.f -l rtl.log#3  Start the simulator, log all waveforms, load wave file and run
vsim -voptargs="+acc" -sva +define+SIM -c work.top_tb -l sim.log -wlfdeleteonquit#4 Set the window types
view wave
view structure
view signals#5 Add signals or signals group to view wave
add wave -divider "System"
add wave -radix hexadecimal -group "System" top_tb/u_top/clk 
add wave -radix hexadecimal -group "System" top_tb/u_top/rst_nadd wave -divider "Memery Option"
add wave -radix hexadecimal -group "Memery" top_tb/u_top/mem_wr_en
add wave -radix hexadecimal -group "Memery" top_tb/u_top/mem_wr_addr
add wave -radix hexadecimal -group "Memery" top_tb/u_top/mem_wr_data
add wave -radix hexadecimal -group "Memery" top_tb/u_top/mem_rd_en
add wave -radix hexadecimal -group "Memery" top_tb/u_top/mem_rd_addr
add wave -radix hexadecimal -group "Memery" top_tb/u_top/mem_rd_dataadd wave -divider "EMB Option"
add wave -radix hexadecimal -group "EMB" top_tb/u_top/emb_wr_en
add wave -radix hexadecimal -group "EMB" top_tb/u_top/emb_wr_addr
add wave -radix hexadecimal -group "EMB" top_tb/u_top/emb_wr_data
add wave -radix hexadecimal -group "EMB" top_tb/u_top/emb_rd_en
add wave -radix hexadecimal -group "EMB" top_tb/u_top/emb_rd_addr
add wave -radix hexadecimal -group "EMB" top_tb/u_top/emb_rd_dataadd wave -radix hexadecimal top_tb/u_top/led #6 Set run Time
run 40ms

以上主要包含了6部分的设置。

3 批处理文件

如:run_sim.bat

echo pause  ::删除Modelsim生成的相关文件
RD work /s /q
DEL transcript vsim.wlf /qvsim -do start.do 
pause

通过批处理文件,调用start.do进行仿真。

4 优点

4.1 文件修改后,只需要在Modelsim CLI界面执行do start.do;

4.2 编辑start.do,添加需要观察的信号,进行波形观察。

5 缺点

修改文件需要编译才能知道文件的语法有错误,这稍微一点好时间可以接受。

因此可以联合FUXI,通过检查语法,当无语法错误后,进行编译仿真。

举例:

下图是结合方法1和方法2的优点,对单端口RAM的仿真结果。

例子连接:待上传。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/81883.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

国产化Excel处理组件Spire.XLS for .NET系列教程:通过 C# 将 TXT 文本转换为 Excel 表格

在数据处理和管理场景中&#xff0c;将原始文本文件&#xff08;TXT&#xff09;高效转换为结构化的 Excel 电子表格是一项常见要求。对于那些需要自动生成报表或者处理日志文件的开发人员而言&#xff0c;借助 C# 实现 TXT 到 Excel 的转换工作&#xff0c;可以简化数据组织和…

DeepSeek 的强化学习优化策略:RLHF 与 DPO 的应用

DeepSeek 的强化学习优化策略&#xff1a;RLHF 与 DPO 的应用 系统化学习人工智能网站&#xff08;收藏&#xff09;&#xff1a;https://www.captainbed.cn/flu 文章目录 DeepSeek 的强化学习优化策略&#xff1a;RLHF 与 DPO 的应用摘要引言技术原理对比1. RLHF&#xff1a…

c: 分号的歧义

最近看到一个关于某些语言里的分号问题&#xff0c;比如下面一个作者就是无意识的每行后面多加了分号导致问题。 其实python的语法可以更好的规避这种潜意识&#xff0c;因为根本就不需要每行后面加分号的意识&#xff0c;也就不需要开发者习惯这种意识。 所以&#xff0c;最后…

Elasticsearch 实战面试题,每个题目都会单独解析

Elasticsearch 在 Java 中最常用的客户端是什么&#xff1f;如何初始化一个 RestHighLevelClient&#xff1f;如何用 Spring Boot 快速集成 Elasticsearch&#xff1f;Spring Data Elasticsearch 如何定义实体类与索引的映射&#xff1f; ES的倒排索引和正排索引的区别及适用场…

拉普拉斯高斯(LoG)滤波器掩模的注意事项

目录 问题&#xff1a; 解答&#xff1a; 一、高斯函数归一化&#xff1a;消除幅度偏差 1. 归一化的定义 2. 为何必须归一化&#xff1f; 二、拉普拉斯系数和为零&#xff1a;抑制直流项干扰 1. 拉普拉斯算子的特性 2. 系数和不为零的后果 三、直流项如何影响零交叉点&…

运维实施35-磁盘管理

了解磁盘 硬盘的接口类型 接口类型发展方向应用场景IDESATA I/II/III个人PC机SCSISAS服务器上 磁盘命名规则 OSIDE(并口)SATA(串口)SCSIRHEL5/dev/hda/dev/sda/dev/sdaRHEL6/dev/sda/dev/sda/dev/sdaRHEL7/dev/sda/dev/sda/dev/sda 磁盘设备的命名 /dev/sda2 s 硬件接口…

API面临哪些风险,如何做好API安全?

API面临的风险 API&#xff08;应用程序编程接口&#xff09;在现代软件开发和集成中扮演着至关重要的角色&#xff0c;但同时也面临着多种安全风险&#xff0c;主要包括以下几个方面&#xff1a; 数据泄露风险&#xff1a; API通常涉及敏感数据的传输和交换&#xff0c;如用…

`application-{env}.yml` 配置文件来实现多环境配置

在 Spring Boot 应用中&#xff0c;使用多套 application-{env}.yml 配置文件来实现多环境配置是一种常见且推荐的做法。这种方式可以帮助你根据不同的环境&#xff08;如开发、测试、生产等&#xff09;加载不同的配置&#xff0c;从而实现环境隔离和灵活配置。以下是如何通过…

野火鲁班猫(arrch64架构debian)从零实现用MobileFaceNet算法进行实时人脸识别(一)conda环境搭建

先安装miniconda wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh chmod x Miniconda3-latest-Linux-aarch64.sh bash Miniconda3-latest-Linux-aarch64.sh source ~/.bashrc conda --version按照MobileFaceNet的github官方指南&#xff0c;需要…

目标检测 Lite-DETR(2023)详细解读

文章目录 迭代高级特征跨尺度融合高效的低层次特征跨尺度融合KDA&#xff1a;Key-aware Deformable Attention 论文翻译&#xff1a; CVPR 2023 | Lite DETR&#xff1a;计算量减少60%&#xff01;高效交错多尺度编码器-CSDN博客 DINO团队的 &#xff08;Lightweight Transfo…

【Git】远程操作

Git 是一个分布式版本控制系统 可以简单理解为&#xff0c;每个人的电脑上都是一个完整的版本库&#xff0c;这样在工作时&#xff0c;就不需要联网 了&#xff0c;因为版本库就在自己的电脑上。 因此&#xff0c; 多个人协作的方式&#xff0c;譬如说甲在自己的电脑上改了文件…

华为云Flexus+DeepSeek征文|基于华为云Flexus云服务的Dify 构建智能客服助手

目录 一、构建智能客服助手应用 二、构建智能客服助手提示词 2.1 什么是智能客服助手&#xff1f; 2.2 生成智能客服助手提示词 三、访问智能客服助手 3.1 智能客服助手发布 3.2 智能客服助手聊天 3.3 开启新会话 四、总结 本篇文章主要基于华为云Flexus云服务的Dify 构…

基于单片机的矩阵键盘与数码管显示实验实践

在单片机开发领域&#xff0c;掌握基础的输入输出控制是迈向复杂项目的关键一步。本次实验聚焦于利用单片机开发板&#xff0c;通过矩阵键盘实现学号后 8 位的输入与数码管显示&#xff0c;旨在掌握数码管显示、软件延时以及键盘扫描及去抖动等核心方法。接下来&#xff0c;就带…

GO语言语法---switch语句

文章目录 基本语法1. 特点1.1 不需要break1.2 表达式可以是任何类型1.3 省略比较表达式1.4 多值匹配1.5 类型switch1.6 case穿透1.7 switch后直接声明变量1.7.1 基本语法1.7.2 带比较表达式1.7.3 不带比较表达式1.7.4 结合类型判断 1.8 switch后的表达式必须与case语句中的表达…

GO语言学习(三)

GO语言学习&#xff08;三&#xff09; GO语言的独特接口可以实现内容和面向对象组织的更加方便&#xff0c;我们从这里来详细的讲解接口&#xff0c;让大家感受一下interface的魅力 interface定义 首先接口是一组方法签名的组合&#xff0c;我们通过接口来实现定义对象的一…

anaconda创建环境出错HTTPS

报错信息 warnings.warn( /home/ti-3/anaconda3/lib/python3.12/site-packages/urllib3/connectionpool.py:1099: InsecureRequestWarning: Unverified HTTPS request is being made to host ‘repo.anaconda.com’. Adding certificate verification is strongly advised. Se…

Android 自定义SnackBar和下滑取消

如何自定义SnackBar 首先我们得了解SnackBar的布局&#xff1a; 之前我看有一些方案是获取内部的contentLayout&#xff0c;然后做一些处理。但是现在已经行不通了&#xff1a; RestrictTo(LIBRARY_GROUP) public static final class SnackbarLayout extends BaseTransientB…

JavaScript性能优化实战(13):性能测试与持续优化

在前面的系列文章中,我们探讨了各种JavaScript性能优化的方法和实战案例。然而,优化工作不应仅是一次性的努力,而应当成为开发流程中的常态。本篇将聚焦于如何建立系统化的性能测试体系,并实现持续的性能优化机制,确保应用长期保持出色的性能表现。 前端性能测试体系构建…

《告别低效签约!智合同如何用AI重构商业“契约时代”》​​——解析智能合约技术的爆发与行业变革

在数字化浪潮奔涌的当下&#xff0c;合同作为商业活动的核心枢纽&#xff0c;正经历着智能化的深度变革。智合同-合同智能应用这一创新模式&#xff0c;犹如一颗璀璨的新星&#xff0c;在商业领域的天空中绽放出独特光芒&#xff0c;深刻改变着人们对合同管理与应用的认知和实践…

塔防战争:动态寻径与成长系统的控制论架构

目录 塔防战争:动态寻径与成长系统的控制论架构引言第一章 炮塔成长系统1.1 属性升级模型1.2 分支进化树第二章 动态路径规划2.1 JPS优化算法2.2 实时障碍更新第三章 敌人行为系统3.1 多波次生成3.2 智能绕障策略第四章 经济平衡系统4.1 资源流动方程4.2 动态定价模型第五章 特…