基于 Python 的界面程序复现:标准干涉槽型设计计算及仿真

基于 Python 的界面程序复现:标准干涉槽型设计计算及仿真

在工业设计与制造领域,刀具的设计与优化是提高生产效率和产品质量的关键环节之一。本文将介绍如何使用 Python 复现一个用于标准干涉槽型设计计算及仿真的界面程序,旨在帮助工程师和研究人员更好地理解和优化刀具设计。

项目背景

在刀具制造过程中,干涉槽型的设计对于刀具的性能和寿命具有重要影响。传统的设计方法往往依赖于经验公式和手工计算,这种方式不仅效率低下,而且容易出错。随着计算机技术的发展,利用计算机辅助设计(CAD)和计算机辅助工程(CAE)工具进行刀具设计已成为趋势。
在这里插入图片描述

本文要复现的界面程序如图所示,来自某论文的一张图片,该程序用于标准干涉槽型的设计计算及仿真。通过该程序,用户可以输入刀具的几何参数和工艺参数,程序将自动计算相关的磨削参数、法向刃宽等,并以图形化的方式显示刀具的槽型。

界面程序开发

技术选型

为了实现上述功能,我们选择使用 Python 语言,并结合以下库进行开发:

  • tkinter:Python 的标准 GUI 库,用于创建图形用户界面。
  • matplotlib:一个强大的绘图库,用于在界面中显示刀具的槽型图形。

程序结构设计

整个界面程序的设计遵循模块化原则,主要分为以下几个部分:

  1. 参数输入部分:用户可以在此输入刀具的几何参数(如直径、齿数、螺旋角等)和工艺参数(如砂轮半径、角度等)。
  2. 图形显示部分:用于实时显示刀具的槽型图形,帮助用户直观地了解设计结果。
  3. 计算与仿真部分:根据用户输入的参数,计算相关的磨削参数和刀具性能指标,并提供仿真功能。

代码实现

以下是界面程序的核心代码实现:

import tkinter as tk
from tkinter import ttk
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.patches import Circleclass App:def __init__(self, root):self.root = rootself.root.title("标准干涉槽型设计计算及仿真界面程序")# 初始化参数字典self.parameters = {"直径 d(mm)": 10.00,"齿数 Nf": 4,"螺旋角 beta(°)": 35.0,"槽前角 gama(°)": 12.0,"芯厚 Wt(mm)": 6.00,"半径 Rw(mm)": 75.00,"角度 theta(°)": 70.00,"法向刃宽 lf(mm)": 1.000,"安装角 epsilon(°)": None,"轴间距 A0(mm)": None,"端面偏距 e(mm)": None}# 创建左侧参数输入部分self.create_parameter_section()# 创建中间图形显示部分self.create_graph_section()# 创建右侧步骤按钮部分self.create_step_section()def create_parameter_section(self):# 刀具结构设计参数self.tool_frame = ttk.LabelFrame(self.root, text="刀具结构设计参数")self.tool_frame.grid(row=0, column=0, padx=10, pady=10, sticky="w")parameters = ["直径 d(mm)", "齿数 Nf", "螺旋角 beta(°)", "槽前角 gama(°)", "芯厚 Wt(mm)"]self.entries_tool = {}for i, param in enumerate(parameters):ttk.Label(self.tool_frame, text=param).grid(row=i, column=0, padx=5, pady=5, sticky="w")entry = ttk.Entry(self.tool_frame)entry.insert(0, str(self.parameters[param]))entry.grid(row=i, column=1, padx=5, pady=5, sticky="w")entry.bind("<Return>", lambda e, p=param: self.update_parameter(p, entry.get()))self.entries_tool[param] = entry# 砂轮结构及位置参数self.wheel_frame = ttk.LabelFrame(self.root, text="砂轮结构及位置参数")self.wheel_frame.grid(row=1, column=0, padx=10, pady=10, sticky="w")parameters = ["半径 Rw(mm)", "角度 theta(°)"]self.entries_wheel = {}for i, param in enumerate(parameters):ttk.Label(self.wheel_frame, text=param).grid(row=i, column=0, padx=5, pady=5, sticky="w")entry = ttk.Entry(self.wheel_frame)entry.insert(0, str(self.parameters[param]))entry.grid(row=i, column=1, padx=5, pady=5, sticky="w")entry.bind("<Return>", lambda e, p=param: self.update_parameter(p, entry.get()))self.entries_wheel[param] = entry# 安装参数和刀宽self.installation_frame = ttk.LabelFrame(self.root, text="安装参数和刀宽")self.installation_frame.grid(row=2, column=0, padx=10, pady=10, sticky="w")parameters = ["法向刃宽 lf(mm)", "安装角 epsilon(°)", "轴间距 A0(mm)", "端面偏距 e(mm)"]self.entries_installation = {}for i, param in enumerate(parameters):ttk.Label(self.installation_frame, text=param).grid(row=i, column=0, padx=5, pady=5, sticky="w")entry = ttk.Entry(self.installation_frame)entry.insert(0, str(self.parameters[param] if self.parameters[param] is not None else ""))entry.grid(row=i, column=1, padx=5, pady=5, sticky="w")if param in ["安装角 epsilon(°)", "轴间距 A0(mm)", "端面偏距 e(mm)"]:entry.config(state='readonly')self.entries_installation[param] = entrydef create_graph_section(self):self.graph_frame = ttk.LabelFrame(self.root, text="图形显示")self.graph_frame.grid(row=0, column=1, rowspan=3, padx=10, pady=10, sticky="nsew")# 创建一个简单的图形显示区域self.fig = Figure(figsize=(5, 5), dpi=100)self.ax = self.fig.add_subplot(111)self.ax.set_xlim(-10, 10)self.ax.set_ylim(-10, 10)self.ax.grid(True)# 初始化时绘制两个圆self.draw_initial_circles()# 创建一个Canvas,用于显示图形self.canvas = FigureCanvasTkAgg(self.fig, master=self.graph_frame)self.canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True)def draw_initial_circles(self):# 清除之前的图形,但保留坐标轴self.ax.clear()self.ax.set_xlim(-10, 10)self.ax.set_ylim(-10, 10)self.ax.grid(True)# 绘制两个圆outer_radius = self.parameters["直径 d(mm)"] / 2inner_radius = self.parameters["芯厚 Wt(mm)"] / 2outer_circle = Circle((0, 0), outer_radius, fill=False, color='blue')inner_circle = Circle((0, 0), inner_radius, fill=False, color='red')self.ax.add_patch(outer_circle)self.ax.add_patch(inner_circle)self.canvas.draw()def draw_slot_profile(self):# 在现有图形上绘制槽型# 这里只是一个示例,实际槽型计算需要根据具体需求实现self.ax.plot([1, 2, 3, 4], [1, 2, 3, 4], 'g-')self.canvas.draw()def create_step_section(self):self.step_frame = ttk.LabelFrame(self.root, text="步骤")self.step_frame.grid(row=0, column=2, rowspan=3, padx=10, pady=10, sticky="nsew")steps = ["step1 计算磨削参数", "step2 计算法向刀宽", "step3 显示刀具径向槽型", "step4 计算面积惯性矩"]self.buttons = []for i, step in enumerate(steps):button = ttk.Button(self.step_frame, text=step, command=lambda s=step: self.on_button_click(s))button.pack(fill=tk.X, padx=5, pady=5)self.buttons.append(button)def update_parameter(self, param, value):try:if param in ["齿数 Nf"]:self.parameters[param] = int(value)else:self.parameters[param] = float(value)# 更新参数字典后,重新绘制图形self.draw_initial_circles()except ValueError:print(f"Invalid value for {param}")def on_button_click(self, step):print(f"Button clicked: {step}")if step == "step1 计算磨削参数":self.calculate_grinding_parameters()elif step == "step3 显示刀具径向槽型":self.draw_slot_profile()def calculate_grinding_parameters(self):# 这里只是一个简单的示例,实际计算需要根据具体需求实现d = self.parameters["直径 d(mm)"]Nf = self.parameters["齿数 Nf"]beta = self.parameters["螺旋角 beta(°)"]lf = self.parameters["法向刃宽 lf(mm)"]# 计算安装角 epsilonepsilon = 45.0  # 示例计算# 计算轴间距 A0A0 = d * Nf / 2  # 示例计算# 计算端面偏距 ee = -d / (2 * Nf)  # 示例计算# 更新参数字典self.parameters["安装角 epsilon(°)"] = epsilonself.parameters["轴间距 A0(mm)"] = A0self.parameters["端面偏距 e(mm)"] = e# 更新界面显示self.entries_installation["安装角 epsilon(°)"].config(state='normal')self.entries_installation["安装角 epsilon(°)"].delete(0, tk.END)self.entries_installation["安装角 epsilon(°)"].insert(0, str(epsilon))self.entries_installation["安装角 epsilon(°)"].config(state='readonly')self.entries_installation["轴间距 A0(mm)"].config(state='normal')self.entries_installation["轴间距 A0(mm)"].delete(0, tk.END)self.entries_installation["轴间距 A0(mm)"].insert(0, str(A0))self.entries_installation["轴间距 A0(mm)"].config(state='readonly')self.entries_installation["端面偏距 e(mm)"].config(state='normal')self.entries_installation["端面偏距 e(mm)"].delete(0, tk.END)self.entries_installation["端面偏距 e(mm)"].insert(0, str(e))self.entries_installation["端面偏距 e(mm)"].config(state='readonly')if __name__ == "__main__":root = tk.Tk()app = App(root)root.mainloop()

功能细节

参数输入

用户可以在界面的左侧输入刀具的几何参数和工艺参数。输入框支持实时更新,用户按下回车键后,程序会立即更新参数并重新绘制图形。

图形显示

中间的图形显示区域使用 matplotlib 绘制刀具的槽型。初始化时,根据用户输入的直径和芯厚绘制两个圆。用户可以通过点击“step3 显示刀具径向槽型”按钮,在现有图形上绘制槽型。

计算与仿真

右侧的步骤按钮提供了不同的计算和仿真功能:

  • step1 计算磨削参数:计算安装角、轴间距和端面偏距,并将结果显示在对应的输入框中。
  • step2 计算法向刀宽:计算法向刀宽(此功能需根据具体需求实现)。
  • step3 显示刀具径向槽型:在图形显示区域绘制刀具的槽型。
  • step4 计算面积惯性矩:计算刀具截面的面积惯性矩(此功能需根据具体需求实现)。

总结与展望

本文介绍的基于 Python 的标准干涉槽型设计计算及仿真界面程序,为刀具设计提供了一个直观、高效的工具。通过 tkintermatplotlib 的结合,实现了参数输入、图形显示和计算仿真等功能。

未来的工作将集中在以下几个方面:

  1. 功能扩展:增加更多的计算和仿真功能,如法向刀宽和面积惯性矩的精确计算。
  2. 优化界面:进一步优化界面布局和交互体验,使其更加用户友好。
  3. 实际应用:将程序应用于实际的刀具设计和制造过程中,验证其有效性和实用性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/81212.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python绘制南丁格尔玫瑰图:从入门到实战

Python绘制南丁格尔玫瑰图&#xff1a;从入门到实战 引言 南丁格尔玫瑰图&#xff08;Nightingale Rose Chart&#xff09;&#xff0c;也被称为极区图&#xff08;Polar Area Chart&#xff09;&#xff0c;是一种独特的数据可视化方式。这种图表由弗洛伦斯南丁格尔&#xff…

计算机操作系统概要

不谋万世者&#xff0c;不⾜谋⼀时。不谋全局者 &#xff0c;足谋⼀域 。 ——陈澹然《寤⾔》《迁都建藩议》 操作系统 一.对文件简单操作的常用基础指令 ls ls 选项 目录或⽂件名:罗列当前⽬录下的⽂件 -l&#xff1a;以长格式显示⽂件和⽬录的详细信息 -a 或 --all&…

<PLC><视觉><机器人>基于海康威视视觉检测和UR机械臂,如何实现N点标定?

前言 本系列是关于PLC相关的博文,包括PLC编程、PLC与上位机通讯、PLC与下位驱动、仪器仪表等通讯、PLC指令解析等相关内容。 PLC品牌包括但不限于西门子、三菱等国外品牌,汇川、信捷等国内品牌。 除了PLC为主要内容外,相关设备如触摸屏(HMI)、交换机等工控产品,如果有…

从专家编码到神经网络学习:DTM 的符号操作新范式

1st author: Paul Soulos paper: Differentiable Tree Operations Promote Compositional Generalization ICML 2023 code: psoulos/dtm: Differentiable Tree Machine 1. 问题与思路 现代深度学习在连续向量空间中取得了巨大成功&#xff0c;然而在处理具有显式结构&#x…

微信小程序第三方代开发模式技术调研与实践总结

🚀 微信小程序第三方代开发模式技术调研与实践总结 📖 前言 随着企业对私有化品牌运营诉求的增加,许多大型客户希望将原本由 SaaS 平台统一提供的小程序迁移至自有主体(AppID)下运行,同时又希望继续沿用 SaaS 平台的业务服务与数据托管方式。微信开放平台提供的“小程…

开启智能未来:DeepSeek赋能行业变革之路

前言 在人工智能重构生产关系的2025年&#xff0c;DeepSeek以其革命性的推理能力和Python生态的技术延展性&#xff0c;正在重塑内容创作与数据智能的边界。本书以"工具迭代思维升维"为双轮驱动&#xff0c;构建从认知突破到商业落地的完整知识图谱。 DeepSeek的崛…

常见三维引擎坐标轴 webgl threejs cesium blender unity ue 左手坐标系、右手坐标系、坐标轴方向

平台 / 引擎坐标系类型Up&#xff08;上&#xff09;方向Forward&#xff08;前进&#xff09;方向前进方向依据说明Unity左手坐标系YZtransform.forward 是 Z 轴正方向&#xff0c;默认摄像机朝 Z 看。Unreal Engine左手坐标系ZXUE 的角色面朝 X&#xff0c;默认使用 GetActor…

Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise论文阅读

冷扩散&#xff1a;无需噪声的任意图像变换反转 摘要 标准扩散模型通常涉及两个核心步骤&#xff1a;图像降质 &#xff08;添加高斯噪声&#xff09;和图像恢复 &#xff08;去噪操作&#xff09;。本文发现&#xff0c;扩散模型的生成能力并不强烈依赖于噪声的选择&#xf…

Java并发编程核心组件简单了解

一、Lock体系 1. ReentrantLock&#xff08;可重入锁&#xff09; Lock lock new ReentrantLock(); lock.lock(); try {// 临界区代码 } finally {lock.unlock(); }特点&#xff1a;可重入、支持公平/非公平策略优势&#xff1a;可中断锁获取、定时锁等待使用场景&#xff1…

第二个五年计划!

下一阶段&#xff01;5年后&#xff01;33岁&#xff01;体重维持在125斤内&#xff01;腰围74&#xff01; 健康目标&#xff1a; 体检指标正常&#xff0c;结节保持较小甚至变小&#xff01; 工作目标&#xff1a; 每年至少在一次考评里拿A&#xff08;最高S&#xff0c;A我理…

Redis(三) - 使用Java操作Redis详解

文章目录 前言一、创建项目二、导入依赖三、键操作四、字符串操作五、列表操作六、集合操作七、哈希表操作八、有序集合操作九、完整代码1. 完整代码2. 项目下载 前言 本文主要介绍如何使用 Java 操作 Redis 数据库&#xff0c;涵盖项目创建、依赖导入及 Redis 各数据类型&…

【Folium】使用离线地图

文章目录 相关文献离线地图下载Folium 使用离线地图 相关文献 Folium — Folium 0.19.5 documentationOffline Map Maker 离线地图下载 我们使用 Offline Map Maker 进行地图下载。 特别注意&#xff1a;Folium 默认支持 WGS84 坐标系&#xff0c;建议下载 WGS84 坐标系的地…

DeepSearch:字节新一代 DeerFlow 框架

项目地址&#xff1a;https://github.com/bytedance/deer-flow/ 【全新的 Multi-Agent 架构设计】独家设计的 Research Team 机制&#xff0c;支持多轮对话、多轮决策和多轮任务执行。与 LangChain 原版 Supervisor 相比&#xff0c;显著减少 Tokens 消耗和 API 调用次数&#…

Qt—用SQLite实现简单的注册登录界面

1.实现目标 本次实现通过SQLite制作一个简易的登录窗口&#xff0c;当点击注册按钮时&#xff0c;登录窗口会消失&#xff0c;会出现一个新的注册界面&#xff1b;完成注册或退出注册时&#xff0c;注册窗口会消失&#xff0c;重新出现登录窗口。注册过的用户信息会出现在SQLi…

day 18:零基础学嵌入式之数据结构——

一、基础内容 1.数据结构&#xff1a;相互之间存在一种或多种特定关系的数据元素的集合。 2.逻辑结构 &#xff08;1&#xff09;集合&#xff0c;所有数据在同一个集合中&#xff0c;关系平等。 &#xff08;2&#xff09;线性&#xff0c;数据和数据之间是一对一的关系 &am…

【SSL证书系列】客户端如何验证https网站服务器发的证书是否由受信任的根证书签发机构签发

客户端验证HTTPS网站证书是否由受信任的根证书颁发机构&#xff08;CA&#xff09;签发&#xff0c;是一个多步骤的过程&#xff0c;涉及证书链验证、信任锚&#xff08;Trust Anchor&#xff09;检查、域名匹配和吊销状态验证等。以下是详细的验证流程&#xff1a; 1. 证书链的…

iOS即时通信的技术要点

iOS即时通信开发的关键技术要点总结&#xff1a; 一、通讯协议选择 Socket通信 基础实现&#xff1a;使用原生BSD Socket或CFNetwork框架&#xff08;复杂&#xff09;&#xff0c;推荐第三方库如CocoaAsyncSocket&#xff08;封装GCDAsyncSocket&#xff09;&#xff0c;简化T…

智能AI构建工地安全网:跌倒、抽搐、区域入侵多场景覆盖

智能AI在工地安全中的应用&#xff1a;从监测到救援的全流程实践 一、背景&#xff1a;高温作业下的工地安全挑战 随着夏季高温持续&#xff0c;工地户外作业环境面临严峻考验。工人因高温疲劳、脱水或突发疾病引发的行为异常&#xff08;如晕厥、抽搐、跌倒&#xff09;频发…

Doris

Apache Doris&#xff08;原名&#xff1a;Palo&#xff09;是一个高性能、实时的MPP分析型数据库&#xff0c;非常适合海量数据的即席查询、报表分析、指标统计等 OLAP 场景。Doris 的设计目标是&#xff1a;极致查询性能、简单易用、支持高并发分析和明细查询。 一、Doris 核…

# 2-STM32F103-复位和时钟控制RCC

STM32-复位和时钟控制RCC 2-STM32-复位和时钟控制RCC摘要说明本文参考资料如下&#xff1a; 一、STM32最小系统回顾STM32F103C8T6核心板原理图 二、复位三、时钟3.1 时钟树3.2 STM32启动过程3.2 SystemInit()函数3.2.1 SystemInit()第1句&#xff1a;3.2.2 SystemInit()第2句&a…