超越视觉极限:深度学习图像超分辨率算法清单【第四部分】

超越视觉极限:深度学习图像超分辨率算法清单【第四部分】

  • 简介
  • 2019年 - SAN (Second-Order Attention Network)
  • 2019年 - IMDN (Information Multi-Distillation Network)
  • 2020年 - SwinIR (Swin Transformer for Image Restoration)
  • 2021年 - Real-ESRGAN (Real-World Super-Resolution via Kernel Estimation and Noise Injection)

这是该系列文章的第四部分

简介

自从深度学习技术被引入到图像超分辨率的研究中,它就彻底改变了我们提升图像质量的方式。本文将带您穿越时间的长河,从2014年的SRCNN算法,到2024年的最新进展,每一次技术的飞跃都为我们打开了新的可能性。我们将总结2014年到2024年出现的各个超分算法的关键技术和创新点。无论您是人工智能的专业人士,还是对前沿科技保持好奇的爱好者,这篇文章都将为您展示深度学习如何在不断超越的视觉极限中扮演关键角色。

2019年 - SAN (Second-Order Attention Network)

  • 简介
    SAN (Second-Order Attention Network) 是在2019年提出的一种图像超分辨率算法。SAN通过引入二阶注意力机制来增强特征表达和特征相关性学习,从而在单图像超分辨率任务中实现更精确的重建。该网络通过聚焦于图像特征的重要部分,提高了超分辨率重建的性能。
  • 关键技术
    1. 二阶注意力机制:SAN利用二阶统计信息来捕捉特征之间的相关性,从而提高特征表达的能力。
    2. 注意力模块:网络包含了专门设计的注意力模块,这些模块能够自适应地调整特征图的权重,突出重要特征并抑制不重要的特征。
    3. 特征融合:SAN在网络中融合了低阶和高阶的特征信息,以丰富特征表示,提升超分辨率的效果。
  • 创新点
    1. 提升特征表达能力:SAN通过二阶注意力机制显著提升了特征的表达能力,这在以往的超分辨率算法中较为少见。
    2. 深入特征相关性学习:SAN对特征之间的相关性进行深入学习,这有助于网络更好地理解和重建图像内容。
    3. 有效的注意力模块设计:SAN中的注意力模块设计有效,能够在不同的特征层次上实现精细的调整,进一步提升了图像重建的质量。
  • 参考链接
    Second-Order Attention Network for Single Image Super-Resolution

SAN的提出为单图像超分辨率提供了一种新的有效方法,特别是在特征表达和注意力机制方面做出了贡献,提高了超分辨率重建的准确性和质量。

2019年 - IMDN (Information Multi-Distillation Network)

  • 简介
    IMDN (Information Multi-Distillation Network) 是在2019年提出的一种轻量级图像超分辨率算法。该算法旨在通过构建信息多蒸馏模块来提高图像超分辨率的效率和性能,同时保持模型的轻量级特性。IMDN通过有效地利用特征信息,并在不同层次上进行特征蒸馏,以实现高质量的图像重建。
  • 关键技术
    1. 信息多蒸馏模块(IMDM):IMDN引入了信息多蒸馏模块,该模块通过分解特征提取过程,有效地提取和利用特征信息。
    2. 逐级特征蒸馏:算法采用逐级特征蒸馏策略,通过层次化的方式逐步精炼和压缩特征,从而提高模型的效率和性能。
    3. 选择性核融合(SKF):IMDN通过选择性核融合机制,动态地调整不同特征的贡献度,进一步优化了特征的利用效率。
  • 创新点
    1. 轻量级设计:IMDN的轻量级设计使其在保持高性能的同时,具有较小的模型大小和计算复杂度,适合在资源受限的设备上部署。
    2. 高效的特征利用:通过信息多蒸馏模块和逐级特征蒸馏策略,IMDN能够高效地利用特征信息,提升了图像重建的质量。
    3. 动态特征融合:选择性核融合机制提供了一种动态调整特征融合方式的方法,使模型能够根据不同的输入自适应地优化特征处理过程。
  • 参考链接
    Lightweight Image Super-Resolution with Information Multi-Distillation Network

IMDN的提出为图像超分辨率领域提供了一种高效且轻量级的解决方案,特别适合于需要实时处理或在移动设备上进行图像超分辨率重建的应用场景。

2020年 - SwinIR (Swin Transformer for Image Restoration)

  • 简介
    SwinIR (Swin Transformer for Image Restoration) 是在2020年提出的一种基于Swin Transformer的图像恢复算法。SwinIR包括三个部分:patch-embedding layer, Swin Transformer blocks和pixel-shuffle layer。这种模型主要用于各种图像恢复任务,包括图像超分辨率、去噪和去模糊等。
  • 关键技术
    1. Swin Transformer:Swin Transformer是一种基于窗口的自注意力机制的Transformer,用于处理图像任务。SwinIR采用了这种结构来处理图像恢复任务。
    2. Patch-Embedding Layer:这一层将输入图像划分为一系列小块(或称为patch),然后将它们映射到一个高维空间,以便在该空间中进行后续的处理。
    3. Pixel-Shuffle Layer:在网络的最后,SwinIR使用像素重排层来将特征映射回图像空间,从而恢复图像的高分辨率细节。
  • 创新点
    1. 引入Transformer到图像恢复:SwinIR是首个将Transformer架构成功应用于各种图像恢复任务的模型,展示了其在这一领域的巨大潜力。
    2. 局部窗口自注意力机制:SwinIR利用局部窗口自注意力机制,相比于全局自注意力机制,它能够更高效地处理图像,并减少计算资源消耗。
    3. 多尺度表示:通过Swin Transformer blocks的层次化设计,SwinIR能够捕获从低级到高级的多尺度图像特征,这对于图像恢复任务至关重要。
  • 参考链接
    SwinIR: Image Restoration Using Swin Transformer

SwinIR的提出不仅在图像恢复领域取得了显著的性能提升,也为未来的研究提供了新的方向,尤其是在利用Transformer架构处理视觉任务方面。

2021年 - Real-ESRGAN (Real-World Super-Resolution via Kernel Estimation and Noise Injection)

  • 简介
    Real-ESRGAN (Real-World Super-Resolution via Kernel Estimation and Noise Injection) 是在2021年提出的一种图像超分辨率算法。这个模型旨在处理现实世界中的超分辨率问题,其中包括复杂的退化过程,如模糊、噪声等。Real-ESRGAN通过估计退化核和注入噪声,能够在增强图像清晰度的同时,更真实地重建图像细节。
  • 关键技术
    1. 退化核估计:Real-ESRGAN能够估计真实世界图像退化过程中的模糊核,这有助于模型更准确地进行超分辨率重建。
    2. 噪声注入:模型在训练过程中注入噪声,以模拟现实世界中的图像退化,提高模型对真实世界图像的泛化能力。
    3. 生成对抗网络(GAN):Real-ESRGAN利用了GAN框架,其中生成器负责重建图像,而鉴别器则确保生成的图像在视觉上接近真实图像。
  • 创新点
    1. 针对真实世界退化的设计:Real-ESRGAN特别针对现实世界的复杂退化过程设计,使其能够处理比传统超分辨率算法更广泛的情况。
    2. 增强的重建质量:通过结合核估计和噪声注入,Real-ESRGAN在重建质量上相较于传统方法有显著提升,尤其是在处理真实世界图像时。
    3. 适用性广泛:Real-ESRGAN不仅适用于合成数据,也适用于未经过处理的真实世界图像,这大大扩展了其应用场景。
  • 参考链接
    Real-World Super-Resolution via Kernel Estimation and Noise Injection

Real-ESRGAN的提出为图像超分辨率领域带来了一种能够应对现实世界复杂退化的有效方法,特别适用于需要处理非理想化条件下图像的应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/7924.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用图网络和视频嵌入预测物理场

文章目录 一、说明二、为什么要预测?三、流体动力学模拟的可视化四、DeepMind神经网络建模五、图形编码六、图形处理器七、图形解码器八、具有不同弹簧常数的轨迹可视化九、预测的物理编码和推出轨迹 一、说明 这是一篇国外流体力学专家在可视化流体物理属性的设计…

大数据技术概述_2.大数据面临的5个方面的挑战

1. 大数据面临着5个主要问题 2012年冬季,来自IBM、微软、谷歌、HP、MIT、斯坦福、加州大学伯克利分校、UIUC等产业界和学术界的数据库领域专家通过在线的方式共同发布了一个关于大数据的白皮书。该白皮书首先指出大数据面临着5个主要问题,分别是异构性&a…

环境搭建 docker-compose

systemctl restart network docker-compose 单独执行一个文件 docker-compose -f version: 3services:nacos-standalone:image: nacos/nacos-server:v2.3.1 container_name: nacos-standaloneenvironment:- PREFER_HOST_MODEhostname- MODEstandalone- NACOS_AUTH_IDENTITY_…

阿里云CentOS 7.9 64位 Liunx 安装redis

具体的步骤如下: 添加 EPEL 仓库,因为 Redis 在标准的 CentOS 仓库中不可用: sudo yum install epel-release安装 Redis: sudo yum install redis启动 Redis 服务: sudo systemctl start redis如果你想让 Redis 在…

使用Vue3开发项目,搭建Vue cli3项目步骤

1.打开cmd ,输入 vue create neoai遇到这样的问题 则需要升级一下电脑上 Vue Cli版本哈 升级完成之后 再次输入命令,创建vue3项目 vue create neoai安装完成后,输入 npm run serve 就可以运行项目啦~ 页面运行效果

【LLM 论文】OpenAI 基于对比学习微调 LLM 得到嵌入模型

论文:Text and Code Embeddings by Contrastive Pre-Training ⭐⭐⭐⭐ OpenAI 一、论文速读 这篇论文基于大型生成式 LLM 通过对比学习来微调得到一个高质量的 text 和 code 的 embedding 模型。 训练数据的格式:是一堆 ( x i , y i ) (x_i, y_i) (x…

上传文件至linux服务器失败

目录 前言异常排查使用df -h命令查看磁盘使用情况使用du -h --max-depth1命令查找占用空间最大的文件夹 原因解决补充:删除文件后,磁盘空间无法得到释放 前言 使用XFTP工具上传文件至CentOS服务器失败 异常 排查 使用df -h命令查看磁盘使用情况 发现磁盘…

C语言:初学者和专家的分水岭

C语言:初学者和专家的分水岭 C语言作为一门古老而强大的编程语言,被认为是菜鸟和大神之间的分水岭。在编程领域,C语言不仅是初学者学习的重要起点,也是专家深入研究和高级编程的基础。本文将通过具体实例来说明C语言在不同级别开发…

【leetcode】链表排序题目总结

21. 合并两个有序链表 递归法 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListNode *next) : va…

怎么ai解答问题?这三个方法都可以

怎么ai解答问题?在数字化飞速发展的今天,人工智能(AI)技术已经渗透到我们生活的方方面面,尤其是在解答问题方面,AI展现出了令人瞩目的能力。那么,哪些软件可以利用AI技术解答问题呢?…

使用curl命令查看服务器端口开放情况

目录 1.ssh端口 22 2.mysql数据库端口 3306 3.web应用端口 (Jellyfin 8082) (wordpress 8088) (tomcat 8080) 4.不存在的端口 5.被防火墙阻挡的端口 1.ssh端口 22 curl -v 10.10.10.205:22 curl…

leetcode_47.全排列 II

47. 全排列 II 题目描述:给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。 示例 1: 输入:nums [1,1,2] 输出: [[1,1,2],[1,2,1],[2,1,1]]示例 2: 输入:nums [1,2,3] …

了解你的构建:发布经理构建难点应对指南

在如今的计算机行业,发布经理的工作任重而道远。一方面他们必须紧跟日益攀升的行业标准,发布速度的极限不断突破,现在要求的速度在过去是远远无法想象的。另一方面,质量的门槛也在不断抬高。 我并非诟病软件更新换代过于迅速频繁…

揭秘数据可视化:五款利器助力决策

在当今这个数据驱动的时代,数据可视化已成为企业决策、数据分析不可或缺的一部分。通过直观、生动的图形、图像,数据可视化能够更快速、更准确地传达信息,帮助企业洞察数据背后的价值。本文将为您介绍几款优秀的数据可视化工具。 一、山海鲸…

【C++ 所有STL容器简介】

【C 所有STL容器简介】 1. vector2. list3. deque4. set / multiset5. map / multimap6. unordered_set / unordered_multiset7. unordered_map / unordered_multimap8. stack9. queue10. priority_queue C 标准模板库(STL)提供了一系列常用的容器&#…

Backblaze发布2024 Q1硬盘故障质量报告-1

作为一家在2021年在美国纳斯达克上市的云端备份公司,Backblaze一直保持着对外定期发布HDD和SSD的故障率稳定性质量报告,给大家提供了一份真实应用场景下的稳定性分析参考数据。 截至2024年第一季度末,Backblaze在其全球数据中心的云存储服务器…

Lua 协程模拟 Golang 的 go defer 编程模式

封装go函数用于创建并启动一个协程: ---go函数创建并启动一个协程 ---param _co_task function 函数原型 fun(_co:thread) function go(_co_task)local co coroutine.create(_co_task) -- 创建一个暂停的协程coroutine.resume(co, co) -- 调用coroutine.resume激活…

弹性云服务器是什么,为何如此受欢迎

云计算作为当下炙手可热的技术领域,已然成为现代企业不可或缺的核心能力。云服务器作为云计算的基石之一,在这个数字化时代发挥着至关重要的作用。而弹性云服务器,作为云服务器的一种演进形式,更是备受瞩目。 弹性云服务器&#…

[笔记] Win11 Microsoft Store App 离线下载

微软应用商店无法下载或下载缓慢解决方法 在一些环境下 Microsoft Store 下载速度缓慢,或者需要账号登录才能安装的场景,可以通过找到对应的离线安装包的形式进行安装。 Micorsoft Store 中的离线安装包一般后缀为 AppxBundle 和 Appx。以 Ubuntu 为例…

如何根据IP获取国家省份城市名称PHP免费版

最近项目遇到需要根据IP获取用户国家功能需求,网上找了一下,很多API接口都需要付费,考虑为公司节约成本,就取找找有没有开源的 github 上面那个包含多种语言,下面这个只有php,用法很简单 $ip 114.114.114…