Transformer 模型及深度学习技术应用

近年来,随着卷积神经网络(CNN)等深度学习技术的飞速发展,人工智能迎来了第三次发展浪潮,AI技术在各行各业中的应用日益广泛。

注意力机制:理解其在现代深度学习中的关键作用;

Transformer模型:深入剖析BERT、GPT(1/2/3/3.5/4)、DETR、ViT、Swin Transformer等经典模型的原理与应用;

生成式模型:探索变分自编码器VAE、生成式对抗网络GAN、扩散模型(Diffusion Model)等技术;

目标检测算法:详细讲解R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD等算法的实现与优化;

图神经网络:深入研究GCN、GAT、GIN等图神经网络模型的应用;

强化学习:解析Q-Learning、DQN等经典强化学习算法;

深度学习模型可解释性与可视化:介绍CAM、Grad-CAM、LIME、t-SNE等技术,提升模型的可理解性。

第一章、注意力(Attention)机制

1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展里程碑)。

2、注意力机制的基本原理(什么是注意力机制?注意力机制的数学表达与基本公式、用机器翻译任务带你了解Attention机制、如何计算注意力权重?)

3、注意力机制的主要类型:键值对注意力机制(Key-Value Attention)、自注意力(Self-Attention)与多头注意力(Multi-Head Attention)、Soft Attention 与 Hard Attention、全局(Global)与局部(Local)注意力

4、注意力机制的优化与变体:稀疏注意力(Sparse Attention)、自适应注意力(Adaptive Attention)、动态注意力机制(Dynamic Attention)、跨模态注意力机制(Cross-Modal Attention)

5、注意力机制的可解释性与可视化技术:注意力权重的可视化(权重热图)

6、案例

第二章、自然语言处理(NLP)领域的Transformer模型

1、Transformer模型的提出背景(从RNN、LSTM到注意力机制的演进、Transformer模型的诞生背景及其在自然语言处理和计算视觉中的重要性)

2、Transformer模型的进化之路(RCTM→RNN Encoder-Decoder→Bahdanau Attention→Luong Attention→Self Attention)

3、Transformer模型拓扑结构(编码器、解码器、多头自注意力机制、前馈神经网络、层归一化和残差连接等)

4、Transformer模型工作原理(输入数据的Embedding、位置编码、层规范化、带掩码的自注意力层、编码器到解码器的多头注意力层、编码器的完整工作流程、解码器的完整工作流程、Transformer模型的损失函数)

5、BERT模型的工作原理(输入表示、多层Transformer编码器、掩码语言模型MLM、下一句预测NSP)

6、GPT系列模型(GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4)的工作原理(单向语言模型、预训练、自回归生成、Zero-shot Learning、上下文学习、RLHF人类反馈强化学习、多模态架构)

7、案例

第三章、计算视觉(CV)领域的Transformer模型

1、ViT模型(提出的背景、基本架构、与传统CNN的比较、输入图像的分块处理、位置编码、Transformer编码器、分类头、ViT模型的训练与优化、ViT模型的Python代码实现)

2、Swin Transformer模型(提出的背景、基本架构、与ViT模型的比较、分层架构、窗口机制、位置编码、Transformer编码器、模型的训练与优化、模型的Python代码实现)

3、DETR模型(提出的背景、基本架构、与RCNN、YOLO系列模型的比较、双向匹配损失与匈牙利匹配算法、匹配损失与框架损失、模型的训练与优化、模型的Python代码实现)

4、案例

第四章、时间序列建模与预测的大语言模型

1、时间序列建模的大语言模型技术细节(基于Transformer的时间序列预测原理、自注意力机制、编码器-解码器结构、位置编码)

2、时间序列建模的大语言模型训练

3、Time-LLM模型详解(拓扑结构简介、重新编程时间序列输入、Prompt-as-Prefix (PaP)等)

4、基于TimeGPT的时间序列预测(TimeGPT工作原理详解、TimeGPT库的安装与使用)

5、案例

第五章、目标检测算法

1、目标检测任务与图像分类识别任务的区别与联系。

2、两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )。

3、一阶段(One-stage)目标检测算法:YOLO模型、SDD模型(拓扑结构及工作原理)。

4、案例

第六章、目标检测的大语言模型

1、基于大语言模型的目标检测的工作原理(输入图像的特征提取、文本嵌入的生成、视觉和语言特征的融合、目标检测与输出)

2、目标检测领域的大语言模型概述(Pix2Seq、Grounding DINO、Lenna等)

3、案例

第七章、语义分割的大语言模型

1、基于大语言模型的语义分割的工作原理(图像特征提取、文本嵌入生成、跨模态融合、分割预测)

2、语义分割领域的大语言模型概述(ProLab、Segment Anything Model、CLIPSeg、Segment Everything Everywhere Model等)

3、案例

第八章、LLaVA多模态大语言模型

1、LLaVA的核心技术与工作原理(模型拓扑结构讲解)

2、LLaVA与其他多模态模型的区别(LLaVA模型的优势有哪些?)

3、LLaVA的架构与训练(LLaVA的多模态输入处理与特征表示、视觉编码器与语言模型的结合、LLaVA的训练数据与预训练过程)

4、LLaVA的典型应用场景(图像问答、图像生成与描述等)

5、案例

第九章、物理信息神经网络(PINN)

1、物理信息神经网络的背景(物理信息神经网络(PINNs)的概念及其在科学计算中的重要性、传统数值模拟方法与PINNs的比较)

2、PINN工作原理:物理定律与方程的数学表达、如何将物理定律嵌入到神经网络模型中?PINN的架构(输入层、隐含层、输出层的设计)、物理约束的形式化(如何将边界条件等物理知识融入网络?)损失函数的设计(数据驱动与物理驱动的损失项)

3、案例

第十章、生成式模型

1、变分自编码器VAE(自编码器的基本结构与工作原理、降噪自编码器、掩码自编码器、变分推断的基本概念及其与传统贝叶斯推断的区别、VAE的编码器和解码器结构及工作原理)。

2、生成式对抗网络GAN(GAN提出的背景和动机、GAN的拓扑结构和工作原理、生成器与判别器的角色、GAN的目标函数、对抗样本的构造方法)。

3、扩散模型Diffusion Model(扩散模型的核心概念?如何使用随机过程模拟数据生成?扩散模型的工作原理)。

4、跨模态图像生成DALL.E(什么是跨模态学习?DALL.E模型的基本架构、模型训练过程)。

5、案例

第十一章、自监督学习模型

1、自监督学习的基本概念(自监督学习的发展背景、自监督学习定义、与有监督学习和无监督学习的区别)

2、经典的自监督学习模型的基本原理、模型架构及训练过程(对比学习: SimCLR、MoCo;生成式方法:AutoEncoder、GPT;预文本任务:BERT掩码语言模型)

3、自监督学习模型的Python代码实现

4、案例

第十二章、图神经网络

1、图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)

2、图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)。

3、图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)。

4、图卷积网络(GCN)的工作原理。

5、图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络。

6、案例

第十三章、强化学习

1、强化学习的基本概念和背景(什么是强化学习?强化学习与其他机器学习方法的区别?强化学习的应用领域有哪些?

2、Q-Learning(马尔可夫决策过程、Q-Learning的核心概念、什么是Q函数?Q-Learning的基本更新规则)。

3、深度Q网络(DQN)(为什么传统Q-Learning在高维或连续的状态空间中不再适用?如何使用神经网络代替Q表来估计Q值?目标网络的作用及如何提高DQN的稳定性?)

4、案例

第十四章、深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解。

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征。

5、案例

第十五章、神经架构搜索(Neural Architecture Search, NAS)

1、NAS的背景和动机(传统的神经网络设计依赖经验和直觉,既耗时又可能达不到最优效果。通过自动搜索,可以发现传统方法难以设计的创新和高效架构。)

2、NAS的基本流程:搜索空间定义(确定搜索的网络架构的元素,如层数、类型的层、激活函数等。)、搜索策略(随机搜索、贝叶斯优化、进化算法、强化学习等)、性能评估

3、NAS的关键技术:进化算法(通过模拟生物进化过程,如变异、交叉和选择,来迭代改进网络架构)、强化学习(使用策略网络来生成架构,通过奖励信号来优化策略网络)、贝叶斯优化(利用贝叶斯方法对搜索空间进行高效的全局搜索,平衡探索和利用)

4、案例

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/79106.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

zynq7035的arm一秒钟最多可以支持触发多少次中断

一、概述 1.关于zynq7035的ARM处理器一秒能够支持多少次中断触发,需要综合来考虑。需要确定ARM处理器的参数,目前zynq7000系列,使用的双核Cortex-A9处理器。其中主频大概在500MHZ~1GHZ左右,不同的用户配置的主频可能稍微有差别。 …

数据结构与算法:图论——最短路径

最短路径 先给出一些leetcode算法题,以后遇见了相关题目再往上增加 最短路径的4个常用算法是Floyd、Bellman-Ford、SPFA、Dijkstra。不同应用场景下,应有选择地使用它们: 图的规模小,用Floyd。若边的权值有负数,需要…

[android]MT6835 Android 关闭selinux方法

Selinux SELinux is an optional feature of the Linux kernel that provides support to enforce access control security policies to enforce MAC. It is based on the LSM framework. Working with SELinux on Android – LineageOS Android 关闭selinux MT6835 Android…

【Linux网络编程】http协议的状态码,常见请求方法以及cookie-session

本文专栏:Linux网络编程 目录 一,状态码 重定向状态码 1,永久重定向(301 Moved Permanently) 2,临时重定向(302 Found) 二,常见请求方法 1,HTTP常见Hea…

当神经网络突破摩尔定律:探索大模型时代的算力新纪元

当摩尔定律熄灭后:AI算力革命如何重塑技术文明的底层逻辑 一、摩尔定律的黄昏:物理极限与经济理性的双重困境 当英特尔在1965年提出摩尔定律时,没有人预料到这个每18-24个月将芯片晶体管数量翻倍的预言会成为现代计算文明的基石。半个世纪以…

位运算题目:寻找重复数

文章目录 题目标题和出处难度题目描述要求示例数据范围进阶 前言解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 解法三思路和算法代码复杂度分析 题目 标题和出处 标题:寻找重复数 出处:287. 寻找重复数 难度 6 级 题目描述 要…

Elasticsearch:没有 “AG” 的 RAG?

作者:来自 Elastic Gustavo Llermaly 了解如何利用语义搜索和 ELSER 构建一个强大且视觉上吸引人的问答体验,而无需使用 LLMs。 想要获得 Elastic 认证?查看下一期 Elasticsearch Engineer 培训的时间! Elasticsearch 拥有众多新…

linux下安装ollama网不好怎么办?

文章目录 前言kkgithub下载脚本,而不是直接运行修改脚本修改权限还是不行?前言 今天想在linux上面更新一下ollama,于是去到官网: https://ollama.com/download/linux linux下安装ollama还是挺简单的: curl -fsSL https://ollama.com/install.sh | sh我也是特别嗨皮地就…

相机-IMU联合标定:相机-IMU外参标定

文章目录 📚简介🚀标定工具kalibr🚀标定数据录制🚀相机-IMU外参标定📚简介 在 VINS(视觉惯性导航系统) 中,相机-IMU外参标定 是确保多传感器数据时空统一的核心环节,其作用可概括为以下关键点: 坐标系对齐(空间同步),外参误差会导致视觉特征点投影与IMU预积…

基于 Java 的实现前端组装查询语句,后端直接执行查询方案,涵盖前端和后端的设计思路

1. 前端设计 前端负责根据用户输入或交互条件,动态生成查询参数,并通过 HTTP 请求发送到后端。 前端逻辑: 提供用户界面(如表单、筛选器等),让用户选择查询条件。将用户选择的条件组装成 JSON 格式的查询参数。发送 HTTP 请求(如 POST 或 GET)到后端。示例: 假设用…

[STM32] 4-2 USART与串口通信(2)

文章目录 前言4-2 USART与串口通信(2)数据发送过程双缓冲与连续发送数据发送过程中的问题 数据接收过程TXE标志位(发送数据寄存器空)TC标志位(发送完成标志位)单个数据的发送数据的连续发送 接收过程中遇到的问题问题描述&#xf…

Qt多线程TCP服务器实现指南

在Qt中实现多线程TCP服务器可以通过为每个客户端连接分配独立的线程来处理&#xff0c;以提高并发性能。以下是一个分步实现的示例&#xff1a; 1. 自定义工作线程类&#xff08;处理客户端通信&#xff09; // workerthread.h #include <QObject> #include <QTcpSo…

详细介绍Python-pandas-DataFrame全部 *功能* 函数

Python-pandas-DataFrame全部 功能 函数 提示&#xff1a;帮帮志会陆续更新非常多的IT技术知识&#xff0c;希望分享的内容对您有用。本章分享的是pandas的使用语法。前后每一小节的内容是存在的有&#xff1a;学习and理解的关联性。【帮帮志系列文章】&#xff1a;每个知识点…

香港科技大学广州|可持续能源与环境学域博士招生宣讲会—四川大学专场

香港科技大学广州&#xff5c;可持续能源与环境学域博士招生宣讲会—四川大学专场 时间&#xff1a;2025年5月8日&#xff08;星期四&#xff09;16:30开始 地点&#xff1a;四川大学基础教学楼A座504 宣讲嘉宾&#xff1a;肖殿勋 助理教授 一经录取&#xff0c;享全额奖学金…

装饰器设计模式(Decorator Pattern)详解

装饰器设计模式(Decorator Pattern)详解 装饰器模式是一种结构型设计模式,它允许动态地向对象添加额外行为,而无需修改其原始类。这种模式通过包装对象的方式提供灵活的扩展功能替代继承。 1. 核心概念 (1)模式定义 装饰器模式:动态地给一个对象添加一些额外的职责,就…

【SpringMVC】详解参数传递与实战指南

目录 1.前言 2.正文 2.1基础参数传递 2.1.1单参数 2.1.2多参数 2.2对象参数绑定 2.2.1自动封装对象 2.2.2参数别名处理 2.3集合类型处理 2.3.1数组接收 2.3.2List集合接收 2.4JSON参数处理 2.4.1介绍JSON 2.4.2传递JSON参数 2.5RESTful风格参数 2.6文件上传处理…

mysql-窗口函数一

目录 一、感受一下分组与窗口函数的区别 二、滑动窗口&#xff08;子窗口&#xff09;大小的确认 2.1 分组函数下order by使用 2.2 窗口子句 2.3 执行流程 三、函数使用 窗口函数需要mysql的版本大于等于8才行&#xff0c;可以先检查一下自己的mysql版本是多少 select ve…

解决在Mac上无法使用“ll”命令

在 macOS 上&#xff0c;ll 命令是一个常见的别名&#xff0c;它通常是指向 ls -l 的。但是&#xff0c;如果你看到 zsh: command not found: ll&#xff0c;这意味着你当前的 zsh 配置中没有设置 ll 作为别名。 解决方法&#xff1a; 1. 使用 ls -l 命令 如果只是想查看目录…

GTA5(传承/增强) 13980+真车 超跑 大型载具MOD整合包+最新GTA6大型地图MOD 5月最新更新

1500超跑载具 1000普通超跑 1500真车超跑 各种军载具1000 各种普通跑车 船舶 飞机 1000 人物1500 添加式led载具1000 超级英雄最新版 添加添加式武器MOD1000 添加地图MOD500 添加超跑载具2000 当前共计1.2wMOD 4月2日更新 新增770menyoo地图 当前共计12770 新增48款超级英雄最新…

初学Vue之记事本案例

初学Vue之记事本案例 案例功能需求相关Vue知识案例实现1.实现方法及代码2.演示 案例收获与总结 案例功能需求 基于Vue实现记事功能&#xff08;不通过原生JS实现&#xff09; 1.点击保存按钮将文本框的内容显示在特定位置&#xff0c;且清空文本框内容 2.点击清空按钮&#x…