17.整体代码讲解

从入门AI到手写Transformer-17.整体代码讲解

  • 17.整体代码讲解
  • 代码

整理自视频 老袁不说话 。

17.整体代码讲解

代码

import collectionsimport math
import torch
from torch import nn
import os
import time
import numpy as np
from matplotlib import pyplot as plt
from matplotlib_inline import backend_inline
import hashlib
import os
import tarfile
import zipfile
import requests
from IPython import display
from torch.utils import dataDATA_HUB = dict()
DATA_URL = "http://d2l-data.s3-accelerate.amazonaws.com/"
DATA_HUB["fra-eng"] = (DATA_URL + "fra-eng.zip","94646ad1522d915e7b0f9296181140edcf86a4f5",
)def try_gpu(i=0):"""如果存在,则返回gpu(i),否则返回cpu()"""if torch.cuda.device_count() >= i + 1:return torch.device(f"cuda:{i}")return torch.device("cpu")def bleu(pred_seq, label_seq, k):"""计算BLEU"""pred_tokens, label_tokens = pred_seq.split(" "), label_seq.split(" ")len_pred, len_label = len(pred_tokens), len(label_tokens)score = math.exp(min(0, 1 - len_label / len_pred))for n in range(1, k + 1):num_matches, label_subs = 0, collections.defaultdict(int)for i in range(len_label - n + 1):label_subs[" ".join(label_tokens[i : i + n])] += 1for i in range(len_pred - n + 1):if label_subs[" ".join(pred_tokens[i : i + n])] > 0:num_matches += 1label_subs[" ".join(pred_tokens[i : i + n])] -= 1score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))return scoredef count_corpus(tokens):  # @save"""统计词元的频率"""# 这里的tokens是1D列表或2D列表# tokens:["大","哥","大","嫂"] 已经是词元# tokens:[["大","哥","大","嫂"]["过","年","好"]]if len(tokens) == 0 or isinstance(tokens[0], list):# 将空的/二维词元列表展平成一个列表tokens = [token for line in tokens for token in line]return collections.Counter(tokens) # Couter类统计频率def download(name, cache_dir=os.path.join(".", "./data")):"""下载一个DATA_HUB中的文件,返回本地文件名"""assert name in DATA_HUB, f"{name} 不存在于{DATA_HUB}"url, sha1_hash = DATA_HUB[name]os.makedirs(cache_dir, exist_ok=True)fname = os.path.join(cache_dir, url.split("/")[-1])if os.path.exists(fname):sha1 = hashlib.sha1()with open(fname, "rb") as f:while True:data = f.read(1048576)if not data:breaksha1.update(data)if sha1.hexdigest() == sha1_hash:return fname  # 命中缓存print(f"正在从{url}下载{fname}...")r = requests.get(url, stream=True, verify=True)with open(fname, "wb") as f:f.write(r.content)return fnamedef download_extract(name, folder=None):  # @save"""下载并解压zip/tar文件"""fname = download(name)base_dir = os.path.dirname(fname)data_dir, ext = os.path.splitext(fname)if ext == ".zip":fp = zipfile.ZipFile(fname, "r")elif ext in (".tar", ".gz"):fp = tarfile.open(fname, "r")else:assert False, "只有zip/tar文件可以被解压缩"fp.extractall(base_dir)return os.path.join(base_dir, folder) if folder else data_dirdef read_data_nmt():"""载入“英语-法语”数据集"""data_dir = download_extract("fra-eng")with open(os.path.join(data_dir, "fra.txt"), "r", encoding="utf-8") as f:return f.read()def masked_softmax(X, valid_lens):"""通过在最后一个轴上掩蔽元素来执行softmax操作"""# X:3D张量,valid_lens:1D或2D张量if valid_lens is None:return nn.functional.softmax(X, dim=-1)else:shape = X.shapeif valid_lens.dim() == 1:valid_lens = torch.repeat_interleave(valid_lens, shape[1])else:valid_lens = valid_lens.reshape(-1)# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0X = sequence_mask(X.reshape(-1, shape[-1]), valid_lens, value=-1e6)return nn.functional.softmax(X.reshape(shape), dim=-1)def sequence_mask(X, valid_len, value=0):"""在序列中屏蔽不相关的项"""maxlen = X.size(1)mask = (torch.arange((maxlen), dtype=torch.float32, device=X.device)[None, :]< valid_len[:, None])X[~mask] = valuereturn Xdef preprocess_nmt(text):"""预处理“英语-法语”数据集"""def no_space(char, prev_char):return char in set(",.!?") and prev_char != " "# 使用空格替换不间断空格# 使用小写字母替换大写字母text = text.replace("\u202f", " ").replace("\xa0", " ").lower()# 在单词和标点符号之间插入空格out = [" " + char if i > 0 and no_space(char, text[i - 1]) else charfor i, char in enumerate(text)]return "".join(out)def tokenize_nmt(text, num_examples=None):"""词元化“英语-法语”数据数据集"""source, target = [], []for i, line in enumerate(text.split("\n")):if num_examples and i > num_examples:breakparts = line.split("\t")if len(parts) == 2:source.append(parts[0].split(" "))target.append(parts[1].split(" "))return source, targetdef grad_clipping(net, theta):  # @save"""裁剪梯度"""if isinstance(net, nn.Module): # 如果模型继承于nn.Moduleparams = [p for p in net.parameters() if p.requires_grad] # 拿出所有参数,如果参数有梯度,就放进一个列表else:params = net.paramsnorm = torch.sqrt(sum(torch.sum((p.grad**2)) for p in params)) # 对梯度平方求和,求和两次之后就变成一个标量了if norm > theta: # 和1比较for param in params:param.grad[:] *= theta / norm #/n 缩放模型大小,就是梯度裁剪def truncate_pad(line, num_steps, padding_token):"""截断或填充文本序列"""if len(line) > num_steps:return line[:num_steps]  # 截断return line + [padding_token] * (num_steps - len(line))  # 填充def build_array_nmt(lines, vocab, num_steps):"""将机器翻译的文本序列转换成小批量"""lines = [vocab[l] for l in lines]lines = [l + [vocab["<eos>"]] for l in lines]array = torch.tensor([truncate_pad(l, num_steps, vocab["<pad>"]) for l in lines])valid_len = (array != vocab["<pad>"]).type(torch.int32).sum(1)return array, valid_lendef load_array(data_arrays, batch_size, is_train=True):  # @save"""构造一个PyTorch数据迭代器"""dataset = data.TensorDataset(*data_arrays)return data.DataLoader(dataset, batch_size, shuffle=is_train)def load_data_nmt(batch_size, num_steps, num_examples=600):"""返回翻译数据集的迭代器和词表"""text = preprocess_nmt(read_data_nmt())source, target = tokenize_nmt(text, num_examples)src_vocab = Vocab(source, min_freq=2, reserved_tokens=["<pad>", "<bos>", "<eos>"])tgt_vocab = Vocab(target, min_freq=2, reserved_tokens=["<pad>", "<bos>", "<eos>"])src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)data_iter = load_array(data_arrays, batch_size)return data_iter, src_vocab, tgt_vocabdef sequence_mask(X, valid_len, value=0):# """在序列中屏蔽不相关的项"""maxlen = X.size(1)mask = (torch.arange((maxlen), dtype=torch.float32, device=X.device)[None, :]< valid_len[:, None])X[~mask] = valuereturn Xdef transpose_qkv(X, num_heads):# """为了多注意力头的并行计算而变换形状"""# 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)# 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,# num_hiddens/num_heads)X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)# 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数,# num_hiddens/num_heads)X = X.permute(0, 2, 1, 3)# 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数,# num_hiddens/num_heads)return X.reshape(-1, X.shape[2], X.shape[3])def train_seq2seq(net, data_iter, lr, num_epochs, tgt_vocab, device):# """训练序列到序列模型"""def xavier_init_weights(m): # 初始化权重if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight) # 线性层的初始化方式if type(m) == nn.GRU:for param in m._flat_weights_names:if "weight" in param:nn.init.xavier_uniform_(m._parameters[param])net.apply(xavier_init_weights) # 给模型应用函数net.to(device)optimizer = torch.optim.Adam(net.parameters(), lr=lr) # 优化器loss = MaskedSoftmaxCELoss() # 损失函数net.train()animator = Animator(xlabel="epoch", ylabel="loss", xlim=[10, num_epochs])for epoch in range(num_epochs): # 执行批量循环timer = Timer()metric = Accumulator(2)  # 训练损失总和,词元数量for batch in data_iter:optimizer.zero_grad() # 梯度置零X, X_valid_len, Y, Y_valid_len = [x.to(device) for x in batch] # 取出XY和它们的有效长度bos = torch.tensor([tgt_vocab["<bos>"]] * Y.shape[0], device=device # 对Y添加bos).reshape(-1, 1)dec_input = torch.cat([bos, Y[:, :-1]], 1)  # 强制教学Y_hat, _ = net(X, dec_input, X_valid_len)l = loss(Y_hat, Y, Y_valid_len)l.sum().backward()  # 损失函数的标量进行“反向传播”grad_clipping(net, 1) # 梯度裁剪num_tokens = Y_valid_len.sum() # 统计一下计算了多少tokenoptimizer.step() # 梯度反传with torch.no_grad():metric.add(l.sum(), num_tokens)if (epoch + 1) % 10 == 0:animator.add(epoch + 1, (metric[0] / metric[1],))print(f"loss {metric[0] / metric[1]:.3f}, {metric[1] / timer.stop():.1f} "f"tokens/sec on {str(device)}")def predict_seq2seq(net,src_sentence,src_vocab,tgt_vocab,num_steps,device,save_attention_weights=False,
):# """序列到序列模型的预测"""# 在预测时将net设置为评估模式net.to(device)net.eval()src_tokens = src_vocab[src_sentence.lower().split(" ")] + [src_vocab["<eos>"]]enc_valid_len = torch.tensor([len(src_tokens)], device=device)src_tokens = truncate_pad(src_tokens, num_steps, src_vocab["<pad>"])# 添加批量轴enc_X = torch.unsqueeze(torch.tensor(src_tokens, dtype=torch.long, device=device), dim=0)enc_outputs = net.encoder(enc_X, enc_valid_len) # 编码器只执行次dec_state = net.decoder.init_state(enc_outputs, enc_valid_len) # 把编码器输出和有效长度都放进state里面# 添加批量轴dec_X = torch.unsqueeze(torch.tensor([tgt_vocab["<bos>"]], dtype=torch.long, device=device), dim=0)output_seq, attention_weight_seq = [], []for _ in range(num_steps):# 只使用解码器块进行了n次预测Y, dec_state = net.decoder(dec_X, dec_state) # Y:[b,n,vs]vs词表大小 预测时一句话b=1# 我们使用具有预测最高可能性的词元,作为解码器在下一时间步的输入dec_X = Y.argmax(dim=2) # 求维度里面最大值的下标,得到下标索引pred = dec_X.squeeze(dim=0).type(torch.int32).item() # 根据下标索引转化成整形,就是预测值,[1,n]# 保存注意力权重(稍后讨论)if save_attention_weights:attention_weight_seq.append(net.decoder.attention_weights)# 一旦序列结束词元被预测,输出序列的生成就完成了if pred == tgt_vocab["<eos>"]:breakoutput_seq.append(pred) # 把值添加进outputreturn " ".join(tgt_vocab.to_tokens(output_seq)), attention_weight_seq # 根据词表大小把这些值转换成对应的词元,用join连接起来def transpose_output(X, num_heads):# """逆转transpose_qkv函数的操作"""X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])X = X.permute(0, 2, 1, 3)return X.reshape(X.shape[0], X.shape[1], -1)def use_svg_display():  # @save"""使用svg格式在Jupyter中显示绘图"""backend_inline.set_matplotlib_formats("svg")def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):"""设置matplotlib的轴"""axes.set_xlabel(xlabel)axes.set_ylabel(ylabel)axes.set_xscale(xscale)axes.set_yscale(yscale)axes.set_xlim(xlim)axes.set_ylim(ylim)if legend:axes.legend(legend)axes.grid()def set_figsize(figsize=(3.5, 2.5)):  # @save"""设置matplotlib的图表大小"""use_svg_display()plt.rcParams["figure.figsize"] = figsizedef dropout_layer(X, dropout):assert 0 <= dropout <= 1# 在本情况中,所有元素都被丢弃if dropout == 1:return torch.zeros_like(X)# 在本情况中,所有元素都被保留if dropout == 0:return Xmask = (torch.rand(X.shape) > dropout).float()return mask * X / (1.0 - dropout)class Accumulator:  # @save"""在n个变量上累加"""def __init__(self, n):self.data = [0.0] * ndef add(self, *args):self.data = [a + float(b) for a, b in zip(self.data, args)]def reset(self):self.data = [0.0] * len(self.data)def __getitem__(self, idx):return self.data[idx]class Timer:  # @save"""记录多次运行时间"""def __init__(self):self.times = []self.start()def start(self):"""启动计时器"""self.tik = time.time()def stop(self):"""停止计时器并将时间记录在列表中"""self.times.append(time.time() - self.tik)return self.times[-1]def avg(self):"""返回平均时间"""return sum(self.times) / len(self.times)def sum(self):"""返回时间总和"""return sum(self.times)def cumsum(self):"""返回累计时间"""return np.array(self.times).cumsum().tolist()class Animator:"""在动画中绘制数据"""def __init__(self,xlabel=None,ylabel=None,legend=None,xlim=None,ylim=None,xscale="linear",yscale="linear",fmts=("-", "m--", "g-.", "r:"),nrows=1,ncols=1,figsize=(3.5, 2.5),):# 增量地绘制多条线if legend is None:legend = []use_svg_display()self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)if nrows * ncols == 1:self.axes = [self.axes,]# 使用lambda函数捕获参数self.config_axes = lambda: set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)self.X, self.Y, self.fmts = None, None, fmtsdef add(self, x, y):# 向图表中添加多个数据点if not hasattr(y, "__len__"):y = [y]n = len(y)if not hasattr(x, "__len__"):x = [x] * nif not self.X:self.X = [[] for _ in range(n)]if not self.Y:self.Y = [[] for _ in range(n)]for i, (a, b) in enumerate(zip(x, y)):if a is not None and b is not None:self.X[i].append(a)self.Y[i].append(b)self.axes[0].cla()for x, y, fmt in zip(self.X, self.Y, self.fmts):self.axes[0].plot(x, y, fmt)self.config_axes()display.display(self.fig)plt.draw()plt.pause(0.001)# display.clear_output(wait=True)class Vocab:"""文本词表"""# 初始化类# tokens:list ["go","some","play","run"]def __init__(self, tokens=None, min_freq=0, reserved_tokens=None):if tokens is None:tokens = []if reserved_tokens is None: # 特殊字符reserved_tokens = []# 按出现频率排序counter = count_corpus(tokens) # 统计频率# 排序,item拿到类似字典的键值对 x[1]频率 [(文字,频率),(文字,频率)]self._token_freqs = sorted(counter.items(), key=lambda x: x[1], reverse=True)# 未知词元的索引为0# 保存所有的词元self.idx_to_token = ["<unk>"] + reserved_tokens# 字典,转化为键值对方便查找self.token_to_idx = {token: idx for idx, token in enumerate(self.idx_to_token)}# 将未舍弃的所有词元添加到(_token_freqs)添加到idx_to_token和token_to_idxfor token, freq in self._token_freqs:if freq < min_freq: # 截断频率,默认为0,每个词都不舍弃breakif token not in self.token_to_idx:self.idx_to_token.append(token)self.token_to_idx[token] = len(self.idx_to_token) - 1 # 把索引加到这个字典里# 返回词表的长度,list方便计算def __len__(self):return len(self.idx_to_token)# 实现词元转为对应的数字# tokens:list,tupledef __getitem__(self, tokens):if not isinstance(tokens, (list, tuple)): # 如果是一个单独的词元return self.token_to_idx.get(tokens, self.unk) # 在字典里用get方法找到它return [self.__getitem__(token) for token in tokens] # 一个一个拿出来# 将数字转化为词元def to_tokens(self, indices):if not isinstance(indices, (list, tuple)):return self.idx_to_token[indices] # 单独索引直接返回return [self.idx_to_token[index] for index in indices] # 遍历按照list返回@property # 装饰器def unk(self):  # 未知词元的索引为0return 0@property # 装饰器def token_freqs(self):return self._token_freqs # 返回原始的未经舍弃的listclass MaskedSoftmaxCELoss(nn.CrossEntropyLoss):# """带遮蔽的softmax交叉熵损失函数"""# pred的形状:(batch_size,num_steps,vocab_size)# label的形状:(batch_size,num_steps)# valid_len的形状:(batch_size,)def forward(self, pred, label, valid_len):weights = torch.ones_like(label)weights = sequence_mask(weights, valid_len)self.reduction = "none"unweighted_loss = super(MaskedSoftmaxCELoss, self).forward(pred.permute(0, 2, 1), label)weighted_loss = (unweighted_loss * weights).mean(dim=1)return weighted_lossclass MultiHeadAttention(nn.Module):# """多头注意力"""def __init__(self,key_size,query_size,value_size,num_hiddens,num_heads,dropout,bias=False,**kwargs,):super(MultiHeadAttention, self).__init__(**kwargs)self.num_heads = num_headsself.attention = DotProductAttention(dropout)self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)def forward(self, queries, keys, values, valid_lens):# queries,keys,values的形状:# (batch_size,查询或者“键-值”对的个数,num_hiddens)# valid_lens 的形状:# (batch_size,)或(batch_size,查询的个数)# 经过变换后,输出的queries,keys,values 的形状:# (batch_size*num_heads,查询或者“键-值”对的个数,# num_hiddens/num_heads)queries = transpose_qkv(self.W_q(queries), self.num_heads)keys = transpose_qkv(self.W_k(keys), self.num_heads)values = transpose_qkv(self.W_v(values), self.num_heads)if valid_lens is not None:# 在轴0,将第一项(标量或者矢量)复制num_heads次,# 然后如此复制第二项,然后诸如此类。valid_lens = torch.repeat_interleave(valid_lens, repeats=self.num_heads, dim=0)# output的形状:(batch_size*num_heads,查询的个数,# num_hiddens/num_heads)output = self.attention(queries, keys, values, valid_lens)# output_concat的形状:(batch_size,查询的个数,num_hiddens)output_concat = transpose_output(output, self.num_heads)return self.W_o(output_concat)class PositionalEncoding(nn.Module):# """位置编码"""def __init__(self, num_hiddens, dropout, max_len=1000):super(PositionalEncoding, self).__init__()self.dropout = nn.Dropout(dropout)# 创建一个足够长的Pself.P = torch.zeros((1, max_len, num_hiddens))X = torch.arange(max_len, dtype=torch.float32).reshape(-1, 1) / torch.pow(10000, torch.arange(0, num_hiddens, 2, dtype=torch.float32) / num_hiddens)self.P[:, :, 0::2] = torch.sin(X)self.P[:, :, 1::2] = torch.cos(X)def forward(self, X):X = X + self.P[:, : X.shape[1], :].to(X.device)return self.dropout(X)class PositionWiseFFN(nn.Module):# """基于位置的前馈网络"""def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs, **kwargs):super(PositionWiseFFN, self).__init__(**kwargs)self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)self.relu = nn.ReLU()self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)def forward(self, X):return self.dense2(self.relu(self.dense1(X)))class AddNorm(nn.Module):# """残差连接后进行层规范化"""def __init__(self, normalized_shape, dropout, **kwargs):super(AddNorm, self).__init__(**kwargs)self.dropout = nn.Dropout(dropout)self.ln = nn.LayerNorm(normalized_shape)nn.Softmax()def forward(self, X, Y):return self.ln(self.dropout(Y) + X)class Encoder(nn.Module):# """编码器-解码器架构的基本编码器接口"""def __init__(self, **kwargs):super(Encoder, self).__init__(**kwargs)def forward(self, X, *args):raise NotImplementedErrorclass Decoder(nn.Module):# """编码器-解码器架构的基本解码器接口"""def __init__(self, **kwargs):super(Decoder, self).__init__(**kwargs)def init_state(self, enc_outputs, *args):raise NotImplementedErrordef forward(self, X, state):raise NotImplementedErrorclass EncoderDecoder(nn.Module):# """编码器-解码器架构的基类"""def __init__(self, encoder, decoder, **kwargs):super(EncoderDecoder, self).__init__(**kwargs)self.encoder = encoderself.decoder = decoderdef forward(self, enc_X, dec_X, *args):enc_outputs = self.encoder(enc_X, *args)dec_state = self.decoder.init_state(enc_outputs, *args)return self.decoder(dec_X, dec_state)class DotProductAttention(nn.Module):# """缩放点积注意力"""def __init__(self, dropout, **kwargs):super(DotProductAttention, self).__init__(**kwargs)self.dropout = nn.Dropout(dropout)# queries的形状:(batch_size,查询的个数,d)# keys的形状:(batch_size,“键-值”对的个数,d)# values的形状:(batch_size,“键-值”对的个数,值的维度)# valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)def forward(self, queries, keys, values, valid_lens=None):d = queries.shape[-1]# 设置transpose_b=True为了交换keys的最后两个维度scores = torch.bmm(queries, keys.transpose(1, 2)) / math.sqrt(d)self.attention_weights = masked_softmax(scores, valid_lens)return torch.bmm(self.dropout(self.attention_weights), values)class AttentionDecoder(Decoder):# """带有注意力机制解码器的基本接口"""def __init__(self, **kwargs):super(AttentionDecoder, self).__init__(**kwargs)@propertydef attention_weights(self):raise NotImplementedErrorclass EncoderBlock(nn.Module):# """Transformer编码器块"""def __init__(self,key_size,query_size,value_size,num_hiddens,norm_shape,ffn_num_input,ffn_num_hiddens,num_heads,dropout,use_bias=False,**kwargs,):super(EncoderBlock, self).__init__(**kwargs)self.attention = MultiHeadAttention(key_size, query_size, value_size, num_hiddens, num_heads, dropout, use_bias)self.addnorm1 = AddNorm(norm_shape, dropout)self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens, num_hiddens)self.addnorm2 = AddNorm(norm_shape, dropout)def forward(self, X, valid_lens):Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))return self.addnorm2(Y, self.ffn(Y))class DecoderBlock(nn.Module):# """解码器中第i个块"""def __init__(self,key_size,query_size,value_size,num_hiddens,norm_shape,ffn_num_input,ffn_num_hiddens,num_heads,dropout,i,**kwargs,):super(DecoderBlock, self).__init__(**kwargs)self.i = i # 表示这是第i个块self.attention1 = MultiHeadAttention(key_size, query_size, value_size, num_hiddens, num_heads, dropout)self.addnorm1 = AddNorm(norm_shape, dropout) # dropout在addnorm里面self.attention2 = MultiHeadAttention(key_size, query_size, value_size, num_hiddens, num_heads, dropout)self.addnorm2 = AddNorm(norm_shape, dropout)self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens, num_hiddens)self.addnorm3 = AddNorm(norm_shape, dropout)def forward(self, X, state): # 输入的output 推理阶段大小[1,1]state存放3个量,1个编码器输出,1个用来产生编码器mask,1个用来连接推理结果enc_outputs, enc_valid_lens = state[0], state[1]# 训练阶段,输出序列的所有词元都在同一时间处理,# 因此state[2][self.i]初始化为None。# 预测阶段,输出序列是通过词元一个接着一个解码的,# 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示 [bos] he isif state[2][self.i] is None:key_values = Xelse:key_values = torch.cat((state[2][self.i], X), axis=1)state[2][self.i] = key_valuesif self.training:batch_size, num_steps, _ = X.shape# dec_valid_lens的开头:(batch_size,num_steps),# 其中每一行是[1,2,...,num_steps]dec_valid_lens = torch.arange(1, num_steps + 1, device=X.device).repeat(batch_size, 1)else:dec_valid_lens = None# 自注意力X2 = self.attention1(X, key_values, key_values, dec_valid_lens)Y = self.addnorm1(X, X2) # dropout加在addnorm里面# 编码器-解码器注意力。# enc_outputs的开头:(batch_size,num_steps,num_hiddens)Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens) # Q来自addnorm,解码器输出做K,VZ = self.addnorm2(Y, Y2)return self.addnorm3(Z, self.ffn(Z)), stateclass TransformerEncoder(Encoder):# """Transformer编码器"""def __init__(self,vocab_size,key_size,query_size,value_size,num_hiddens,norm_shape,ffn_num_input,ffn_num_hiddens,num_heads,num_layers,dropout,use_bias=False,**kwargs,):super(TransformerEncoder, self).__init__(**kwargs)self.num_hiddens = num_hiddensself.embedding = nn.Embedding(vocab_size, num_hiddens)# self.embedding = nn.Embedding(vocab_size, num_hiddens, device=try_gpu())self.pos_encoding = PositionalEncoding(num_hiddens, dropout)self.blks = nn.Sequential()for i in range(num_layers):self.blks.add_module("block" + str(i),EncoderBlock(key_size,query_size,value_size,num_hiddens,norm_shape,ffn_num_input,ffn_num_hiddens,num_heads,dropout,use_bias,),)def forward(self, X, valid_lens, *args):# 因为位置编码值在-1和1之间,# 因此嵌入值乘以嵌入维度的平方根进行缩放,# 然后再与位置编码相加。X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))self.attention_weights = [None] * len(self.blks)for i, blk in enumerate(self.blks):X = blk(X, valid_lens)self.attention_weights[i] = blk.attention.attention.attention_weightsreturn Xclass TransformerDecoder(AttentionDecoder):def __init__(self,vocab_size,key_size,query_size,value_size,num_hiddens,norm_shape,ffn_num_input,ffn_num_hiddens,num_heads,num_layers,dropout,**kwargs,):super(TransformerDecoder, self).__init__(**kwargs)self.num_hiddens = num_hiddensself.num_layers = num_layersself.embedding = nn.Embedding(vocab_size, num_hiddens)self.pos_encoding = PositionalEncoding(num_hiddens, dropout) # dropout在里面self.blks = nn.Sequential()for i in range(num_layers): # n个block块self.blks.add_module("block" + str(i),DecoderBlock(key_size,query_size,value_size,num_hiddens,norm_shape,ffn_num_input,ffn_num_hiddens,num_heads,dropout,i,),)self.dense = nn.Linear(num_hiddens, vocab_size) # 线性层,不执行softmax不影响下标def init_state(self, enc_outputs, enc_valid_lens, *args):return [enc_outputs, enc_valid_lens, [None] * self.num_layers]# state 第一个有效数字是编码器输出,第二个有效数字是编码器的有效长度,用来产生mask,第三个是用来保存KVdef forward(self, X, state):X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens)) # *根号d,位置编码self._attention_weights = [[None] * len(self.blks) for _ in range(2)]for i, blk in enumerate(self.blks): # block块X, state = blk(X, state)# 解码器自注意力权重self._attention_weights[0][i] = blk.attention1.attention.attention_weights# “编码器-解码器”自注意力权重self._attention_weights[1][i] = blk.attention2.attention.attention_weightsreturn self.dense(X), state@propertydef attention_weights(self):return self._attention_weightsif __name__ == "__main__":num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10lr, num_epochs, device = 0.005, 200, try_gpu()ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4key_size, query_size, value_size = 32, 32, 32norm_shape = [32]train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size, num_steps)encoder = TransformerEncoder(len(src_vocab),key_size,query_size,value_size,num_hiddens,norm_shape,ffn_num_input,ffn_num_hiddens,num_heads,num_layers,dropout,)decoder = TransformerDecoder(len(tgt_vocab),key_size,query_size,value_size,num_hiddens,norm_shape,ffn_num_input,ffn_num_hiddens,num_heads,num_layers,dropout,)net = EncoderDecoder(encoder, decoder)train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device) # 训练engs = ["go .", "i lost .", "he's calm .", "i'm home ."]fras = ["va !", "j'ai perdu .", "il est calme .", "je suis chez moi ."]for eng, fra in zip(engs, fras):translation, dec_attention_weight_seq = predict_seq2seq( # 预测net, eng, src_vocab, tgt_vocab, num_steps, device, True)print(f"{eng} => {translation}, ", f"bleu {bleu(translation, fra, k=2):.3f}")

输出结果
```python
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
loss 0.034, 10150.2 tokens/sec on cpu
go . => va !,  bleu 1.000
i lost . => je vous en <unk> .,  bleu 0.000
he's calm . => il est calme .,  bleu 1.000
i'm home . => je suis chez moi .,  bleu 1.000

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/77647.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端性能优化:所有权转移

前端性能优化&#xff1a;所有权转移 在学习rust过程中&#xff0c;学到了所有权概念&#xff0c;于是便联想到了前端&#xff0c;前端是否有相关内容&#xff0c;于是进行了一些实验&#xff0c;并整理了这些内容。 所有权转移&#xff08;Transfer of Ownership&#xff09;…

Missashe考研日记-day23

Missashe考研日记-day23 0 写在前面 博主前几天有事回家去了&#xff0c;断更几天了不好意思&#xff0c;就当回家休息一下调整一下状态了&#xff0c;今天接着开始更新。虽然每天的博客写的内容不算多&#xff0c;但其实还是挺费时间的&#xff0c;比如这篇就花了我40多分钟…

Docker 中将文件映射到 Linux 宿主机

在 Docker 中&#xff0c;有多种方式可以将文件映射到 Linux 宿主机&#xff0c;以下是常见的几种方法&#xff1a; 使用-v参数• 基本语法&#xff1a;docker run -v [宿主机文件路径]:[容器内文件路径] 容器名称• 示例&#xff1a;docker run -it -v /home/user/myfile.txt:…

HarmonyOS-ArkUI-动画分类简介

本文的目的是,了解一下HarmonyOS动画体系中的分类。有个大致的了解即可。 动效与动画简介 动画,是客户端提升界面交互用户体验的一个重要的方式。可以使应用程序更加生动灵越,提高用户体验。 HarmonyOS对于界面的交互方面,围绕回归本源的设计理念,打造自然,流畅品质一提…

C++如何处理多线程环境下的异常?如何确保资源在异常情况下也能正确释放

多线程编程的基本概念与挑战 多线程编程的核心思想是将程序的执行划分为多个并行运行的线程&#xff0c;每个线程可以独立处理任务&#xff0c;从而充分利用多核处理器的性能优势。在C中&#xff0c;开发者可以通过std::thread创建线程&#xff0c;并使用同步原语如std::mutex、…

区间选点详解

步骤 operator< 的作用在 C 中&#xff0c; operator< 是一个运算符重载函数&#xff0c;它定义了如何比较两个对象的大小。在 std::sort 函数中&#xff0c;它会用到这个比较函数来决定排序的顺序。 在 sort 中&#xff0c;默认会使用 < 运算符来比较两个对象…

前端配置代理解决发送cookie问题

场景&#xff1a; 在开发任务管理系统时&#xff0c;我遇到了一个典型的身份认证问题&#xff1a;​​用户登录成功后&#xff0c;调获取当前用户信息接口却提示"用户未登录"​​。系统核心流程如下&#xff1a; ​​用户登录​​&#xff1a;调用 /login 接口&…

8.1 线性变换的思想

一、线性变换的概念 当一个矩阵 A A A 乘一个向量 v \boldsymbol v v 时&#xff0c;它将 v \boldsymbol v v “变换” 成另一个向量 A v A\boldsymbol v Av. 输入 v \boldsymbol v v&#xff0c;输出 T ( v ) A v T(\boldsymbol v)A\boldsymbol v T(v)Av. 变换 T T T…

【java实现+4种变体完整例子】排序算法中【冒泡排序】的详细解析,包含基础实现、常见变体的完整代码示例,以及各变体的对比表格

以下是冒泡排序的详细解析&#xff0c;包含基础实现、常见变体的完整代码示例&#xff0c;以及各变体的对比表格&#xff1a; 一、冒泡排序基础实现 原理 通过重复遍历数组&#xff0c;比较相邻元素并交换逆序对&#xff0c;逐步将最大值“冒泡”到数组末尾。 代码示例 pu…

系统架构设计(二):基于架构的软件设计方法ABSD

“基于架构的软件设计方法”&#xff08;Architecture-Based Software Design, ABSD&#xff09;是一种通过从软件架构层面出发指导详细设计的系统化方法。它旨在桥接架构设计与详细设计之间的鸿沟&#xff0c;确保系统的高层结构能够有效指导后续开发。 ABSD 的核心思想 ABS…

Office文件内容提取 | 获取Word文件内容 |Javascript提取PDF文字内容 |PPT文档文字内容提取

关于Office系列文件文字内容的提取 本文主要通过接口的方式获取Office文件和PDF、OFD文件的文字内容。适用于需要获取Word、OFD、PDF、PPT等文件内容的提取实现。例如在线文字统计以及论文文字内容的提取。 一、提取Word及WPS文档的文字内容。 支持以下文件格式&#xff1a; …

Cesium学习笔记——dem/tif地形的分块与加载

前言 在Cesium的学习中&#xff0c;学会读文档十分重要&#xff01;&#xff01;&#xff01;在这里附上Cesium中英文文档1.117。 在Cesium项目中&#xff0c;在平坦坦地球中加入三维地形不仅可以增强真实感与可视化效果&#xff0c;还可以​​提升用户体验与交互性&#xff0c…

Spring Boot 断点续传实战:大文件上传不再怕网络中断

精心整理了最新的面试资料和简历模板&#xff0c;有需要的可以自行获取 点击前往百度网盘获取 点击前往夸克网盘获取 一、痛点与挑战 在网络传输大文件&#xff08;如视频、数据集、设计稿&#xff09;时&#xff0c;常面临&#xff1a; 上传中途网络中断需重新开始服务器内…

数码管LED显示屏矩阵驱动技术详解

1. 矩阵驱动原理 矩阵驱动是LED显示屏常用的一种高效驱动方式&#xff0c;利用COM&#xff08;Common&#xff0c;公共端&#xff09;和SEG&#xff08;Segment&#xff0c;段选&#xff09;线的交叉点控制单个LED的亮灭。相比直接驱动&#xff0c;矩阵驱动可以显著减少所需I/…

【上位机——MFC】菜单类与工具栏

菜单类 CMenu&#xff0c;封装了关于菜单的各种操作成员函数&#xff0c;另外还封装了一个非常重要的成员变量m_hMenu(菜单句柄) 菜单使用 添加菜单资源加载菜单 工具栏相关类 CToolBarCtrl-》父类是CWnd&#xff0c;封装了关于工具栏控件的各种操作。 CToolBar-》父类是CC…

liunx中常用操作

查看或修改linux本地mysql端口 cat /etc/my.cnf 如果没有port可以添加&#xff0c;有可以修改 查看本地端口占用情况 bash netstat -nlt | grep 3307 HADOOP集群 hdfs启动与停止 # 一键启动hdfs集群 start-dfs.sh # 一键关闭hdfs集群 stop-dfs.sh #除了一键启停外&#x…

衡石chatbi如何通过 iframe 集成

iframe 集成方式是最简单的一种&#xff0c;您只需要在您的 HTML 文件中&#xff08;或 Vue/React 组件中&#xff09;添加一个 iframe 元素&#xff0c;并设置其 src 属性为 AI 助手的 URL。 <iframesrc"https://develop.hengshi.org/copilot"width"100%&q…

Java集合框架深度解析:HashMap、HashSet、TreeMap、TreeSet与哈希表原理详解

一、核心数据结构总览 1. 核心类继承体系 graph TDMap接口 --> HashMapMap接口 --> TreeMapSet接口 --> HashSetSet接口 --> TreeSetHashMap --> LinkedHashMapHashSet --> LinkedHashSetTreeMap --> NavigableMapTreeSet --> NavigableSet 2. 核心特…

HTTP 1.0 和 2.0 的区别

HTTP 1.0 和 2.0 的核心区别体现在性能优化、协议设计和功能扩展上&#xff0c;以下是具体对比&#xff1a; 一、核心区别对比 特性HTTP 1.0HTTP 2.0连接方式非持久连接&#xff08;默认每次请求新建 TCP 连接&#xff09;持久连接&#xff08;默认保持连接&#xff0c;可复用…

gnome中删除application中失效的图标

什么是Application 这一块的东西应该叫application&#xff0c;准确来说应该是applications。 正文 系统级&#xff1a;/usr/share/applications 用户级&#xff1a;~/.local/share/applications ying192 ~/.l/s/applications> ls | grep xampp xampp.desktoprm ~/.local…