【机器学习】什么是决策树?

什么是决策树?

决策树是一种用于分类和回归问题的模型。它通过一系列的“决策”将数据逐步分裂,最终得出预测结果。可以把它看作是一个“树”,每个节点表示一个特征的判断,而每个分支代表了可能的判断结果,最终的叶子节点表示预测结果。

通俗易懂的理解:

假设你正在玩一个猜谜游戏,目标是猜测一个人的年龄。你从以下几个问题开始:

  1. 你是否成年?
  2. 如果是,你的收入是否高于一定水平?
  3. 如果不是,你是学生吗?

每问一个问题,都会将可能的答案进一步分成不同的组,这样你最终会根据这些问题判断出一个大致的年龄范围。

决策树就是通过这种方式来做决策的:根据每个特征(问题)的条件,将数据逐层分组,最终在树的叶子节点给出结果。

举个简单的例子:

假设我们有一个数据集,其中包含不同动物的特征,如体重、是否有羽毛、是否会飞等,目标是判断动物是鸟还是非鸟(比如猫)。

体重(kg)是否有羽毛是否会飞动物类型
0.5
1.5
0.2
0.3
5

如何理解决策树:

  1. 第一个问题是否有羽毛?如果有羽毛,可能是鸟,如果没有羽毛,可能是猫。
  2. 第二个问题是否会飞?如果有羽毛但不能飞,可能是鸟,如果能飞,那么就是鸟。

决策树的结构:

在这个例子中,决策树的结构可能如下:

  • 根节点:是否有羽毛?
    • 如果有羽毛:是否会飞?
      • 如果能飞:是鸟
      • 如果不能飞:是鸟
    • 如果没有羽毛:是猫

代码示例:

我们可以使用Python的scikit-learn库来实现一个简单的决策树分类器,来判断动物是否是鸟。

from sklearn import tree
import numpy as np
from matplotlib import rcParams
import matplotlib.pyplot as plt# 设置字体为支持中文的字体
rcParams['font.family'] = 'SimHei'
rcParams['axes.unicode_minus'] = False# 数据:体重(kg)、是否有羽毛、是否会飞
X = np.array([[0.5, 1, 1], [1.5, 0, 0], [0.2, 1, 1], [0.3, 1, 0], [5, 0, 0]])# 标签:鸟=1,猫=0
y = np.array([1, 0, 1, 1, 0])# 创建决策树分类器
clf = tree.DecisionTreeClassifier()# 训练模型
clf = clf.fit(X, y)# 用模型进行预测(预测一个新的动物:体重 0.4kg,有羽毛,不会飞)
prediction = clf.predict([[0.4, 1, 0]])# 打印预测结果
if prediction == 1:print("这是一个鸟。")
else:print("这是一个猫。")# 可视化决策树
import matplotlib.pyplot as plt
tree.plot_tree(clf, feature_names=['体重', '是否有羽毛', '是否会飞'], class_names=['猫', '鸟'], filled=True)
plt.show()

代码解释:

  • 数据 (X):每一行表示一个动物的特征,包括体重、是否有羽毛和是否会飞。1表示有羽毛/会飞,0表示没有羽毛/不会飞。
  • 标签 (y)0表示猫,1表示鸟。
  • 训练模型:我们用 DecisionTreeClassifier() 创建一个决策树分类器,并用 clf.fit(X, y) 训练它。
  • 预测:我们使用训练好的模型来预测一个新动物的类别(体重0.4kg、有羽毛、不飞行)。
  • 可视化决策树tree.plot_tree()C 用于绘制训练出来的决策树,帮助我们理解树的结构。

输出解释:

  • 代码会告诉我们,预测的动物是鸟还是猫。
  • 如果我们运行代码,决策树的可视化结果将显示决策树的结构,帮助我们理解每个节点的决策依据。

在这里插入图片描述
总结:

决策树通过一系列的条件判断来做出预测。它通过将数据逐步分裂成子集,最终在叶子节点给出一个预测结果。它的优点是易于理解和可解释性强,但缺点是容易过拟合,特别是在数据集很复杂时。为了防止过拟合,我们通常会进行剪枝,限制树的深度等。

希望这个解释和代码示例能帮助你更好地理解决策树!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/73668.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java面试黄金宝典15

1. 请找出增序排列中一个数字第一次和最后一次出现的数组下标 定义 由于数组是增序排列的,我们可以利用二分查找的特性来高效地定位目标数字。对于查找第一次出现的位置,当中间元素等于目标数字时,我们需要继续向左搜索,以确保找…

CentOS 7安装 mysql

CentOS 7安装 mysql 1. yum 安装 mysql 配置mysql源 yum -y install mysql57-community-release-el7-10.noarch.rpm安装MySQL服务器 yum -y install mysql-community-server启动MySQL systemctl start mysqld.service查看MySQL运行状态,运行状态如图&#xff…

科软25机试

题目: 2025科软复试上机题&#xff08;回忆版&#xff09;题解_哔哩哔哩_bilibili 1. 字符串反转 #include<bits/stdc.h> using namespace std;void solve(string& a, int CurN) {if (!(CurN % 2)) {int right a.size() - 1;int left 0;while (left < right)…

Oracle相关的面试题

以下是150道Oracle相关的面试题&#xff0c;涵盖了Oracle的基础概念、架构、SQL与PL/SQL、性能调优、高可用性、备份与恢复、安全、分区与索引、存储与内存管理、网络与连接、版本与升级等方面&#xff0c;希望对你有所帮助。 Oracle基础概念 1. 什么是Oracle数据库&#xff1…

docker安装,镜像,常用命令,Docker容器卷,Docker应用部署,自定义镜像,Docker服务编排,创建私有仓库

1.为什么使用docker 如果开发环境和测试环境的允许软件版本不一致&#xff0c;可能会导致项目无法正常启动 把环境和项目一起打包发送给测试环境 1.1docker的概念 开源的应用容器引擎&#xff0c;完全使用沙箱机制&#xff0c;相互隔离&#xff0c;容器性能开销极低 一种容…

ES 字段的映射定义了字段的类型及其行为

在 Elasticsearch 中&#xff0c;字段的映射定义了字段的类型及其行为。你提供的 content_answer 字段映射如下&#xff1a; Json 深色版本 "content_answer": { "type": "text", "fields": { "keyword": { …

Manus的开源替代者之一:OpenManus通用AI智能体框架解析及产品试用

引言 在AI智能体领域&#xff0c;Monica团队近期发布的Manus被誉为全球首个通用型AI智能体。该项目推出后迅速爆红&#xff0c;邀请码一号难求&#xff0c;随之而来的是各路开发者快速构建了众多类似的开源替代方案。其中&#xff0c;MetaGPT团队的5位工程师仅用3小时就开发完…

Linux MariaDB部署

1&#xff1a;查看Linux系统版本 cat /etc/os-release#返回结果&#xff1a; NAME"CentOS Linux" VERSION"7 (Core)" ID"centos" ID_LIKE"rhel fedora" VERSION_ID"7" PRETTY_NAME"CentOS Linux 7 (Core)" ANSI…

PHP MySQL 预处理语句

PHP MySQL 预处理语句 引言 在PHP中与MySQL数据库进行交互时,预处理语句是一种非常安全和高效的方法。预处理语句不仅可以防止SQL注入攻击,还可以提高数据库查询的效率。本文将详细介绍PHP中预处理语句的用法,包括其基本概念、语法、优势以及在实际开发中的应用。 预处理…

算法 | 2024最新算法:鳑鲏鱼优化算法原理,公式,应用,算法改进研究综述,matlab代码

2024最新鳑鲏鱼优化算法(BFO)研究综述 鳑鲏鱼优化算法(Bitterling Fish Optimization, BFO)是2024年提出的一种新型群智能优化算法,受鳑鲏鱼独特的繁殖行为启发,通过模拟其交配、产卵和竞争机制进行全局优化。该算法在多个领域展现出优越性能,尤其在解决复杂非线性问题中…

HDR(HDR10/ HLG),SDR

以下是HDR&#xff08;HDR10/HLG&#xff09;和SDR的详细解释&#xff1a; 1. SDR&#xff08;Standard Dynamic Range&#xff0c;标准动态范围&#xff09; • 定义&#xff1a;SDR是传统的动态范围标准&#xff0c;主要用于8位色深的视频显示&#xff0c;动态范围较窄&…

uni-app页面怎么设计更美观

顶部 页面最顶部要获取到手机设备状态栏的高度&#xff0c;避免与状态栏重叠或者被状态栏挡住 // 这是最顶部的父级容器 <view :style"{ paddingTop: ${statusBarHeight extraPadding}px }">.... </view> export default {data() {return {statusBarH…

江西核威环保科技:打造世界前沿的固液分离设备高新企业

随着市场经济的不断发展&#xff0c;消费者的需求越来越大&#xff0c;为了更好的服务广大新老客户&#xff0c;作为知名品牌的“江西核威环保科技有限公司&#xff08;以下简称江西核威环保科技&#xff09;”&#xff0c;将坚持以“服务为企业宗旨&#xff0c;全力打造世界前…

Ethernet(以太网)详解

一、Ethernet的定义与核心特性 以太网&#xff08;Ethernet&#xff09;是一种 基于IEEE 802.3标准的局域网&#xff08;LAN&#xff09;技术&#xff0c;用于设备间通过有线或光纤介质进行数据通信。其核心特性包括&#xff1a; 标准化&#xff1a;遵循IEEE 802.3系列协议&am…

JBDev - Theos下一代越狱开发工具

JBDev - Theos下一代越狱开发工具 自越狱诞生以来&#xff0c;Theos一直是越狱开发的主流工具&#xff0c;大多数开发者使用Theos编译代码&#xff0c;再用lldb手动调试。JBDev简化了这个过程&#xff0c;项目地址https://github.com/lich4/JBDev 简介 JBDev用于Xcode越狱开…

黑苹果及OpenCore Legacy Patcher

黑苹果及OpenCore Legacy Patcher OpenCoreUnable to resolve dependencies, error code 71 OpenCore Unable to resolve dependencies, error code 71 黑苹果升级后打补丁不成功&#xff0c;比如提示以下错误&#xff0c;可参考官方文档进行修复。 Open TerminalType sudo …

el-table + el-pagination 前端实现分页操作

el-table el-pagination 前端实现分页操作 后端返回全部列表数据&#xff0c;前端进行分页操作 html代码 <div><el-table :data"tableData" border><el-table-column label"序号" type"index" width"50" /><el…

PTA 1097-矩阵行平移

给定一个&#x1d45b;&#x1d45b;nn的整数矩阵。对任一给定的正整数&#x1d458;<&#x1d45b;k<n&#xff0c;我们将矩阵的奇数行的元素整体向右依次平移1、……、&#x1d458;、1、……、&#x1d458;、……1、……、k、1、……、k、……个位置&#xff0c;平移…

C++蓝桥杯实训篇(一)

片头 嗨~小伙伴们&#xff0c;大家好&#xff01;现在我们来到实训篇啦~本篇章涉及算法知识&#xff0c;比基础篇稍微难一点&#xff0c;我会尽量把习题讲的通俗易懂。准备好了吗&#xff1f;咱们开始咯&#xff01; 第1题 递归实现指数型枚举 我们先画个图~ 从图中&#xff…

#C8# UVM中的factory机制 #S8.5# 对factory机制的重载进一步思考

前面的重载,我们已经谈了很多,为什么还需要进一步聊聊呢。作为码农,我们喜欢拿来多种相近语言,进行对比理解,相信这是一种加深对问题理解的方式。 一 C++ 重载 在 C++ 中,重载 和 多态 的英文术语分别是:重载 → Overloading ;多态 → Polymorphism 重载的定义:在…