Python----数据可视化(Pyecharts三:绘图二:涟漪散点图,K线图,漏斗图,雷达图,词云图,地图,柱状图折线图组合,时间线轮廓图)

1、涟漪特效散点图

from pyecharts.globals import SymbolType
from pyecharts.charts import EffectScatter
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.globals import ThemeType
# 绘制图表
es = (EffectScatter(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE)).add_xaxis(Faker.choose()).add_yaxis('',Faker.values(),symbol=SymbolType.DIAMOND,symbol_size=20)
)
# 渲染图表
es.render_notebook()

2、K线图

from pyecharts.charts import Kline
from pyecharts import options as opts
data = [[2320.26, 2320.26, 2287.3, 2362.94],[2300, 2291.3, 2288.26, 2308.38],[2295.35, 2346.5, 2295.35, 2345.92],[2347.22, 2358.98, 2337.35, 2363.8],[2360.75, 2382.48, 2347.89, 2383.76],[2383.43, 2385.42, 2371.23, 2391.82],[2377.41, 2419.02, 2369.57, 2421.15],[2425.92, 2428.15, 2417.58, 2440.38],[2411, 2433.13, 2403.3, 2437.42],[2432.68, 2334.48, 2427.7, 2441.73],[2430.69, 2418.53, 2394.22, 2433.89],[2416.62, 2432.4, 2414.4, 2443.03],[2441.91, 2421.56, 2418.43, 2444.8],[2420.26, 2382.91, 2373.53, 2427.07],[2383.49, 2397.18, 2370.61, 2397.94],[2378.82, 2325.95, 2309.17, 2378.82],[2322.94, 2314.16, 2308.76, 2330.88],[2320.62, 2325.82, 2315.01, 2338.78],[2313.74, 2293.34, 2289.89, 2340.71],[2297.77, 2313.22, 2292.03, 2324.63],[2322.32, 2365.59, 2308.92, 2366.16],[2364.54, 2359.51, 2330.86, 2369.65],[2332.08, 2273.4, 2259.25, 2333.54],[2274.81, 2326.31, 2270.1, 2328.14],[2333.61, 2347.18, 2321.6, 2351.44],[2340.44, 2324.29, 2304.27, 2352.02],[2326.42, 2318.61, 2314.59, 2333.67],[2314.68, 2310.59, 2296.58, 2320.96],[2309.16, 2286.6, 2264.83, 2333.29],[2282.17, 2263.97, 2253.25, 2286.33],[2255.77, 2270.28, 2253.31, 2276.22],
]
# 绘制图表
kl = (Kline().add_xaxis([f'2030/6/{i}' for i in range(1,len(data)+1)]).add_yaxis('',data)
)
# 渲染图表
kl.render_notebook()

3、漏斗图 

from pyecharts.charts import Funnel
from pyecharts.faker import Faker
from pyecharts import options as opts
fun = (Funnel().add('',data_pair=[(k,v) for k,v in zip(Faker.choose(),Faker.values())],label_opts= opts.LabelOpts(formatter='{b}:{c}',position='inside'),sort_='ascending')
)
fun.render_notebook()

4、雷达图 

from pyecharts.charts import Radar
from pyecharts import options as opts
#添加数据项
data1=[[98,100,89,89,97]]
data2 = [[100,89,79,67,61]]
#绘制雷达图
radar = (Radar().add_schema([opts.RadarIndicatorItem(name="语文",max_=100),opts.RadarIndicatorItem(name="数学",max_=100),opts.RadarIndicatorItem(name="化学",max_=100),opts.RadarIndicatorItem(name="历史",max_=100),opts.RadarIndicatorItem(name="地理",max_=100),]).add('小明',data1,color=Faker.rand_color()).add('大虎',data2,color=Faker.rand_color()).set_series_opts(label_opts=opts.LabelOpts(is_show=False),linestyle_opts=opts.LineStyleOpts(width=3))
)
radar.render_notebook()

5、词云图 

from pyecharts.charts import WordCloud
from pyecharts import options as opts
data = [ ['ThinkPad','15.7'], ['联想','14.5'],['惠普','14.4'], ['华为','11.7'], ['华硕','8.2'], ['戴尔','8.1'], ['Acer 宏碁','4.5'], ['苹果','3.5'], ['神舟','3.2'], ['ROG','3.1'], ['机械革命','2.4'], ['msi 微星','1.8'], ['外星人','1.5'], ['微软','1.4'], ['荣耀','1.2'], ['雷神','1'], ['三星','0.7'], ['红米','0.6'], ['机械师','0.5'], ['小米','0.5'], ['炫龙','0.4'], ['雷蛇','0.2'], ['壹号本','0.1'], ['a 豆','0.1'],['未来人类','0.1'], ['技嘉','0.1'], ['中柏','0.1'], ['VAIO','0.1'], ['火影','0.1'], ['LG','0.1'], ['松下','0'], ['麦本本','0'], ['吾空','0'], ['长城','0'], ['GPD','0'], ['清华同方','0'], ['神基','0'], ['爱尔轩','0'], ['酷比魔方','0'], ['海尔','0'], ['谷歌','0'], ['台电','0'], ['iru','0'], ['攀升 IPASON','0'], ['NEC','0'], ['夏普','0'],['京东京造','0'], ['锡恩帝','0'], ['皓勤','0'], ['Intel','0']]
# 绘制指定图形
wd = (WordCloud()     # 初始化词云图表.add('',data,shape='star') 
)
# 渲染图表
wd.render_notebook()

6、地图

from pyecharts.charts import Map
from pyecharts import options as opts
from pyecharts.faker import Faker
map = (Map() # 初始化地图对象.add('商家A',[['北京市',100],['上海市',150],['太原市',99]],'china')  # 1. 数据的key一定要和地图上的名称相符# 2. 地图上没有的key尽量不要去用,很有可能显示不出来
)
# 渲染图表
map.render_notebook()

地图坐标图

from pyecharts.charts import Geo
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.globals import ChartType
from pyecharts.globals import SymbolType
geo = (Geo().add_schema().add('',data_pair=[i for i in zip(Faker.provinces,Faker.values())],label_opts= opts.LabelOpts(is_show=False),type_=ChartType.EFFECT_SCATTER) # 填充数据.add('',[('北京','上海1'),('北京','广州'),('广州','上海')],type_=ChartType.LINES,      # 绘制成线linestyle_opts=opts.LineStyleOpts(curve=0.2),  # 设置线的平滑度effect_opts=opts.EffectOpts(symbol_size=6,symbol=SymbolType.ARROW,color='green'),color='green')
)
# 渲染图表
geo.render_notebook()

7、柱状图折线图组合

from pyecharts.charts import Bar,Line
from pyecharts.globals import ThemeType
from pyecharts import options as opts
# 设置数据
x_value = [f'{i}月' for i in range(1,13)]
# 蒸发
evaporation = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
# 降水
precipitation = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
# 温度
temperature = [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2]
# 柱状图
bar = (Bar().add_xaxis(xaxis_data=x_value) # 设置x轴数据.add_yaxis('蒸发',evaporation).add_yaxis('降水',precipitation).set_global_opts(title_opts=opts.TitleOpts('组合图'),yaxis_opts=opts.AxisOpts(name='水量',min_=0,max_=250,axislabel_opts=opts.LabelOpts(formatter='{value}ml'))).extend_axis(yaxis=opts.AxisOpts(name='温度',min_=0,max_=25,axislabel_opts=opts.LabelOpts(formatter='{value}℃'))) # 追加y轴数据
)
# 折线图
line = (Line().add_xaxis(xaxis_data=x_value).add_yaxis('温度',temperature,yaxis_index=1) # yaxis_index指定第几个y轴内容
)
# 混合2个图表
bar.overlap(line)
# 渲染图表
bar.render_notebook()

8、时间线轮播图

from pyecharts.charts import Timeline,Bar
from pyecharts.faker import Faker
# 绘制时间线图表
timeline = Timeline()
# 设置x轴数据
x_value = Faker.choose()
for year in range(2020,2031):bar = (Bar().add_xaxis(x_value).add_yaxis('商家A',Faker.values()).add_yaxis('商家B',Faker.values()))# 将图表增加到时间线中timeline.add(bar,f'{year}年')
# 渲染图表
timeline.render_notebook()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/72563.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自然语言处理预训练模型的研究综述

📕参考::2020-11-02,https://kns.cnki.net/kcms/detail/11.2127.tp.20201030.1952.017.html 主要是这篇文章的自己摘了点笔记。 预训练模型的深度学目标是如何使预训练好的模型处于良好的初始状态,在下游任务中达到更好的性能表现…

ES6(1) 简介与基础概念

1. ES6 简介 ES6(ECMAScript 6)是 JavaScript 的一个重要版本,它在 ES5 的基础上进行了扩展和优化。ES6 主要应用于现代 Web 开发,提高了 JavaScript 的编程效率和可读性。 2. ES6 与 JavaScript 的关系 JavaScript 是一种基于 E…

HTML深度解读

## 引言 HTML(HyperText Markup Language)是构建网页的基础语言。自1991年由Tim Berners-Lee发明以来,HTML已经经历了多次版本更新,从HTML 1.0到HTML5,每一次更新都带来了新的特性和功能。本文将深入探讨HTML的核心概…

一次Linux下 .net 调试经历

背景: Xt160Api, 之前在windows下用.net调用,没有任何问题。 但是移植到Linux去后,.net程序 调用 init(config_path) 总是报错 /root/test 找不到 traderApi.ini (/root/test 是程序目录) 然后退出程序 解决过程: 于是考虑是不是参数传错了&…

iOS底层原理系列01-iOS系统架构概览-从硬件到应用层

1. 系统层级结构 iOS系统架构采用分层设计模式,自底向上可分为五个主要层级,每层都有其特定的功能职责和技术组件。这种层级化结构不仅使系统更加模块化,同时也提供了清晰的技术抽象和隔离机制。 1.1 Darwin层:XNU内核、BSD、驱动…

k8s 修改节点驱逐阈值

编辑 /var/lib/kubelet/config.yaml 文件 kind: KubeletConfiguration evictionHard:nodefs.available: "5%" # 降低磁盘压力触发阈值imagefs.available: "10%" # 调整容器镜像存储触发阈值nodefs.inodesFree: "3%

日志存储与分析

日志是系统运行的详细记录,包含各种事件发生的主体、时间、位置、内容等关键信息。出于运维可观测、网络安全监控及业务分析等多重需求,企业通常需要将分散的日志采集起来,进行集中存储、查询和分析,以进一步从日志数据里挖掘出有…

PHP与MySQL的高效数据交互:最佳实践与优化技巧

在现代Web开发中,PHP与MySQL的组合仍然是最常见的技术栈之一。PHP作为一种广泛使用的服务器端脚本语言,与MySQL这一强大的关系型数据库管理系统相结合,能够构建出功能强大且高效的Web应用。然而,随着数据量的增长和用户需求的提升…

Flutter 边框按钮:OutlinedButton 完全手册与设计最佳实践

目录 1. 引言 2. OutlinedButton 的基本用法 3. 主要属性 3.1 核心属性详解 3.2 ButtonStyle 子属性详解 (styleFrom/copyWith) 状态响应优先级说明 4. 自定义按钮样式 4.1 修改边框颜色和文本颜色 4.2 修改按钮形状 4.3 修改按钮大小 4.4 集中演示 5. 结论 相关推…

【Node.js入门笔记4---fs 目录操作】

Node.js入门笔记4 Node.js---fs 目录操作一、目录操作1.fs.mkdir():创建目录。异步,非阻塞。创建单个目录创建多个目录创建目前之前需要确认是否存在: 2. fs.mkdirSync():用于创建一个新的目录。异步,非阻塞。3.fs.rmd…

IP风险度自检,互联网的安全“指南针”

IP地址就像我们的网络“身份证”,而IP风险度则是衡量这个“身份证”安全性的重要指标。它关乎着我们的隐私保护、账号安全以及网络体验,今天就让我们一起深入了解一下IP风险度。 什么是IP风险度 IP风险度是指一个IP地址可能暴露用户真实身份或被网络平台…

【软考-架构】5.3、IPv6-网络规划-网络存储-补充考点

✨资料&文章更新✨ GitHub地址:https://github.com/tyronczt/system_architect 文章目录 IPv6网络规划与设计建筑物综合布线系统PDS💯考试真题第一题第二题 磁盘冗余阵列网络存储技术其他考点💯考试真题第一题第二题 IPv6 网络规划与设计…

数据结构------线性表(顺序表)

一、线性表顺序存储详解 (一)线性表核心概念 1. 结构定义 // 数据元素类型 typedef struct person {char name[32];char sex;int age;int score; } DATATYPE;// 顺序表结构 typedef struct list {DATATYPE *head; // 存储空间基地址int tlen; …

SVN学习笔记

svn:版本控制软件 解决:1.协作开发 2.远程开发 3.版本回退 服务端软件: VisualSVN http://www.visualsvn.com 客户端软件:Tortoisesvn http://tortoisesvn.net/downloads 1.checkout(检出) 第一查更新数据到本地, 2.update&#xf…

uniapp-x js 限制

1.String(str) 不允许&#xff0c;android模拟室报错&#xff0c;找不到String 2.JSON.parse不接受泛类型 export const genData function<T> (initData:T) : T {return JSON.parse<T>(JSON.stringify(initData))!;//不可以&#xff0c;必须明确类型 } error: …

PyTorch使用-张量的创建

文章目录 张量的创建1. 安装 PyTorch2. 基本创建方式2.1 torch.tensor 根据指定数据创建张量2.2. torch.Tensor 根据形状创建张量, 其也可用来创建指定数据的张量2.3. 指定类型的张量创建2.3.1. torch.IntTensor&#xff1a;创建整数类型张量2.3.2. torch.FloatTensor&#xff…

基于asp.net实现的连锁餐厅收银系统[包运行成功+永久免费答疑辅导]

基于ASP.NET实现的连锁餐厅收银系统背景&#xff0c;可以从以下几个方面进行阐述&#xff1a; 一、技术背景 ASP.NET框架的普及与优势&#xff1a; ASP.NET是微软开发的一种用于构建Web应用程序的框架&#xff0c;它基于.NET Framework&#xff0c;提供了丰富的类库和开发工具…

PyTorch 深度学习实战(11):强化学习与深度 Q 网络(DQN)

在之前的文章中&#xff0c;我们介绍了神经网络、卷积神经网络&#xff08;CNN&#xff09;、循环神经网络&#xff08;RNN&#xff09;、Transformer 等多种深度学习模型&#xff0c;并应用于图像分类、文本分类、时间序列预测等任务。本文将介绍强化学习的基本概念&#xff0…

92.HarmonyOS NEXT开发学习路径与最佳实践总结:构建高质量应用

温馨提示&#xff1a;本篇博客的详细代码已发布到 git : https://gitcode.com/nutpi/HarmonyosNext 可以下载运行哦&#xff01; HarmonyOS NEXT开发学习路径与最佳实践总结&#xff1a;构建高质量应用 文章目录 HarmonyOS NEXT开发学习路径与最佳实践总结&#xff1a;构建高质…

HarmonyOS-应用程序框架基础

应用程序框架与应用模型的区别 应用框架可以看做是应用模型的一种实现方式&#xff0c;开发人员可以用应用模型来描述应用程序的结构和行为的描述&#xff0c;然后使用应用程序框架来实现这些描述。 应用模型 应用模型是一个应用程序的模型&#xff0c;它是一种抽象的描述&a…