PyTorch使用-张量的创建

文章目录

  • 张量的创建
  • 1. 安装 PyTorch
  • 2. 基本创建方式
    • 2.1 torch.tensor 根据指定数据创建张量
    • 2.2. torch.Tensor 根据形状创建张量, 其也可用来创建指定数据的张量
    • 2.3. 指定类型的张量创建
      • 2.3.1. torch.IntTensor:创建整数类型张量
      • 2.3.2. torch.FloatTensor:创建浮点类型张量
      • 2.3.3. torch.DoubleTensor:创建双精度浮点类型张量
    • 2.4. 指定数据类型的其他方式
    • 2.5. 总结
  • 3. 创建线性和随机张量
    • 3.1 创建线性张量
      • 3.1.1. torch.arange:创建等间隔的整数张量
      • 3.1.2. torch.linspace:创建等间隔的浮点数张量
    • 3.2. 随机种子设置
      • 3.2.1 torch.random.manual_seed:设置随机种子
    • 3.3. 创建随机张量
      • 3.3.1. torch.randn:创建标准正态分布的随机张量
      • 3.3.2. torch.rand:创建均匀分布的随机张量
      • 3.3.3. torch.randint:创建整数随机张量
      • 3.4. 总结
  • 4. 创建全 0\1 张量
    • 4.1. 创建全1 张量
      • 4.1.1. torch.ones:创建全 1 张量
      • 4.1.2. torch.ones_like:创建与输入张量形状相同的全 1 张量
    • 4.2. 创建全 0 张量
      • 4.2.1. torch.zeros:创建全 0 张量
      • 4.2.2. torch.zeros_like:创建与输入张量形状相同的全 0 张量
    • 4.3. 创建全为指定值的张量
      • 4.3.1. torch.full:创建全为指定值的张量
      • 4.3.2. torch.full_like:创建与输入张量形状相同的全为指定值的张量
      • 4.4. 总结
  • 5. 张量元素类型转换
    • 5.1. 使用 tensor.type() 方法
    • 5.2. 使用 tensor.double() 方法
    • 5.3. 其他类型转换方法
    • 5.4. 使用 tensor.to() 方法
      • 5.4.1. 转换数据类型
      • 5.4.2. 同时转换设备和数据类型
    • 5.5. 总结

张量的创建

PyTorch 是一个广泛使用的开源深度学习框架,由 Facebook 的 AI 研究团队开发,并以其灵活性和易于使用的特性而受到许多研究者和开发者的喜爱。它将数据封装成张量(Tensor)来进行运算。PyTorch 中的张量就是元素为同一种数据类型的多维矩阵。在 PyTorch 中,张量以 “类” 的形式封装起来,对张量的一些运算、处理的方法被封装在类中。

1. 安装 PyTorch

首先,确保你已经安装了 PyTorch。你可以通过 Python 的包管理器 pip 来安装它:

pip install torch torchvision

2. 基本创建方式

torch.IntTensor、torch.FloatTensor、torch.DoubleTensor 创建指定类型的张量

2.1 torch.tensor 根据指定数据创建张量

torch.tensor 是直接从数据(如列表、元组等)创建张量的方法。它会根据输入的数据推断数据类型(dtype)。

import torch
# 从列表创建张量
data = [1, 2, 3, 4]
x = torch.tensor(data)
print(x)
print(x.dtype)  # 默认推断为 torch.int64
程序输出:
tensor([1, 2, 3, 4])
torch.int64

2.2. torch.Tensor 根据形状创建张量, 其也可用来创建指定数据的张量

torch.Tensor 是一个类,可以用来创建未初始化的张量。它接受形状(shape)作为参数,返回一个未初始化的张量。

# 创建一个 2x3 的未初始化张量
x = torch.Tensor(2, 3)
print(x)

输出:

tensor([[1.4013e-45, 0.0000e+00, 1.4013e-45],[0.0000e+00, 1.4013e-45, 0.0000e+00]])

注意:torch.Tensor 也可以用来创建指定数据的张量,但不推荐这种方式,因为它的行为不如 torch.tensor 直观。

# 不推荐:从列表创建张量
data = [1, 2, 3, 4]
x = torch.Tensor(data)
print(x)

输出:

tensor([1., 2., 3., 4.])

2.3. 指定类型的张量创建

PyTorch 提供了多种数据类型(dtype),可以通过以下方式创建指定类型的张量:

2.3.1. torch.IntTensor:创建整数类型张量

# 创建一个 2x2 的整数类型张量
x = torch.IntTensor([[1, 2], [3, 4]])
print(x)
print(x.dtype)  # torch.int32

输出:

tensor([[1, 2],[3, 4]], dtype=torch.int32)
torch.int32

2.3.2. torch.FloatTensor:创建浮点类型张量

# 创建一个 2x2 的浮点类型张量
x = torch.FloatTensor([[1, 2], [3, 4]])
print(x)
print(x.dtype)  # torch.float32

输出:

ensor([[1., 2.],[3., 4.]])
torch.float32

2.3.3. torch.DoubleTensor:创建双精度浮点类型张量

# 创建一个 2x2 的双精度浮点类型张量
x = torch.DoubleTensor([[1, 2], [3, 4]])
print(x)
print(x.dtype)  # torch.float64

输出:

tensor([[1., 2.],[3., 4.]], dtype=torch.float64)
torch.float64

2.4. 指定数据类型的其他方式

除了使用 torch.IntTensor、torch.FloatTensor 等,还可以通过 dtype 参数直接指定数据类型。

# 创建一个 2x2 的浮点类型张量
x = torch.tensor([[1, 2], [3, 4]], dtype=torch.float32)
print(x)
print(x.dtype)  # torch.float32

输出:

tensor([[1., 2.],[3., 4.]])
torch.float32

2.5. 总结

方法用途
torch.tensor(data)根据数据创建张量,自动推断数据类型。
torch.Tensor(shape)根据形状创建未初始化的张量。
torch.IntTensor(data)创建整数类型(torch.int32)的张量。
torch.FloatTensor(data)创建浮点类型(torch.float32)的张量。
torch.DoubleTensor(data)创建双精度浮点类型(torch.float64)的张量。
torch.tensor(data, dtype=…)创建指定数据类型的张量(推荐,更直观且灵活)。

3. 创建线性和随机张量

3.1 创建线性张量

3.1.1. torch.arange:创建等间隔的整数张量

torch.arange 用于创建一个从起始值到结束值(不包括结束值)的等间隔整数张量。

import torch
# 创建一个从 0 到 9 的张量
x = torch.arange(10)
print(x)

输出:

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

可以指定起始值、结束值和步长:

# 创建一个从 2 到 8,步长为 2 的张量
x = torch.arange(2, 10, 2)
print(x)

输出:

tensor([2, 4, 6, 8])

3.1.2. torch.linspace:创建等间隔的浮点数张量

torch.linspace 用于创建一个从起始值到结束值的等间隔浮点数张量,可以指定元素的数量。

# 创建一个从 0 到 1 的 5 个等间隔元素的张量
x = torch.linspace(0, 1, 5)
print(x)

输出:

tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])

3.2. 随机种子设置

为了保证随机实验的可重复性,可以设置随机种子。

3.2.1 torch.random.manual_seed:设置随机种子

# 设置随机种子
torch.random.manual_seed(42)
# 创建一个随机张量
x = torch.randn(2, 2)
print(x)

输出:

tensor([[ 0.3367,  0.1288],[ 0.2345,  0.2303]])

注:每次运行代码时,生成的随机张量都会相同。

3.3. 创建随机张量

3.3.1. torch.randn:创建标准正态分布的随机张量

torch.randn 用于创建服从标准正态分布(均值为 0,方差为 1)的随机张量。

# 创建一个 2x2 的标准正态分布随机张量
x = torch.randn(2, 2)
print(x)

输出:

tensor([[-0.4032,  0.8380],[-1.3886, -0.2935]])

3.3.2. torch.rand:创建均匀分布的随机张量

torch.rand 用于创建在 [0, 1) 区间内均匀分布的随机张量。

# 创建一个 2x2 的均匀分布随机张量
x = torch.rand(2, 2)
print(x)

输出:

tensor([[0.1234, 0.5678],[0.9101, 0.2345]])

3.3.3. torch.randint:创建整数随机张量

torch.randint 用于创建指定范围内的整数随机张量。

# 创建一个 2x2 的随机整数张量,范围在 [0, 10)
x = torch.randint(0, 10, (2, 2))
print(x)

输出:

tensor([[3, 7],[2, 5]])

3.4. 总结

方法用途
torch.arange(start, end, step)创建等间隔的整数张量。
torch.linspace(start, end, steps)创建等间隔的浮点数张量。
torch.random.manual_seed(seed)设置随机种子,确保实验可重复。
torch.randn(shape)创建标准正态分布的随机张量。
torch.rand(shape)创建 [0, 1) 区间内均匀分布的随机张量。
torch.randint(low, high, shape)创建指定范围内的整数随机张量。

4. 创建全 0\1 张量

4.1. 创建全1 张量

4.1.1. torch.ones:创建全 1 张量

torch.ones 用于创建指定形状的全 1 张量。

import torch# 创建一个 2x3 的全 1 张量
x = torch.ones(2, 3)
print(x)

输出:

tensor([[1., 1., 1.],[1., 1., 1.]])

4.1.2. torch.ones_like:创建与输入张量形状相同的全 1 张量

torch.ones_like 用于创建一个与输入张量形状相同的全 1 张量。

# 创建一个与 x 形状相同的全 1 张量
y = torch.ones_like(x)
print(y)

输出:

tensor([[1., 1., 1.],[1., 1., 1.]])

4.2. 创建全 0 张量

4.2.1. torch.zeros:创建全 0 张量

torch.zeros 用于创建指定形状的全 0 张量。

# 创建一个 2x3 的全 0 张量
x = torch.zeros(2, 3)
print(x)

输出:

tensor([[0., 0., 0.],[0., 0., 0.]])

4.2.2. torch.zeros_like:创建与输入张量形状相同的全 0 张量

torch.zeros_like 用于创建一个与输入张量形状相同的全 0 张量。

# 创建一个与 x 形状相同的全 0 张量
y = torch.zeros_like(x)
print(y)

输出:

tensor([[0., 0., 0.],[0., 0., 0.]])

4.3. 创建全为指定值的张量

4.3.1. torch.full:创建全为指定值的张量

torch.full 用于创建指定形状且所有元素为指定值的张量。

# 创建一个 2x3 的全为 5 的张量
x = torch.full((2, 3), 5)
print(x)

输出:

tensor([[5, 5, 5],[5, 5, 5]])

4.3.2. torch.full_like:创建与输入张量形状相同的全为指定值的张量

torch.full_like 用于创建一个与输入张量形状相同且所有元素为指定值的张量。

# 创建一个与 x 形状相同的全为 10 的张量
y = torch.full_like(x, 10)
print(y)

输出:

tensor([[10, 10, 10],[10, 10, 10]])

4.4. 总结

方法用途
torch.ones(shape)创建指定形状的全 1 张量。
torch.ones_like(input)创建与输入张量形状相同的全 1 张量。
torch.zeros(shape)创建指定形状的全 0 张量。
torch.zeros_like(input)创建与输入张量形状相同的全 0 张量。
torch.full(shape, value)创建指定形状且所有元素为指定值的张量。
torch.full_like(input, value)创建与输入张量形状相同且所有元素为指定值的张量。

5. 张量元素类型转换

5.1. 使用 tensor.type() 方法

tensor.type() 方法可以将张量转换为指定的类型。

import torch# 创建一个浮点类型的张量
x = torch.tensor([1.0, 2.0, 3.0])
print(x.dtype)  # 默认是 torch.float32# 转换为双精度浮点类型 (torch.float64)
x_double = x.type(torch.DoubleTensor)
print(x_double)
print(x_double.dtype)

输出:

torch.float32
tensor([1., 2., 3.], dtype=torch.float64)
torch.float64

5.2. 使用 tensor.double() 方法

tensor.double() 是 tensor.type(torch.DoubleTensor)
的简写形式,用于将张量转换为双精度浮点类型(torch.float64)。

# 转换为双精度浮点类型
x_double = x.double()
print(x_double)
print(x_double.dtype)

输出:

tensor([1., 2., 3.], dtype=torch.float64)
torch.float64

5.3. 其他类型转换方法

PyTorch 提供了多种类型转换方法,类似于 tensor.double(),可以直接调用:

方法转换为的类型
tensor.float()torch.float32
tensor.double()torch.float64
tensor.half()torch.float16
tensor.int()torch.int32
tensor.long()torch.int64
tensor.short()torch.int16
tensor.byte()torch.uint8
tensor.bool()torch.bool
示例:
# 创建一个浮点类型的张量
x = torch.tensor([1.0, 2.0, 3.0])# 转换为整型
x_int = x.int()
print(x_int)
print(x_int.dtype)# 转换为布尔型
x_bool = x.bool()
print(x_bool)
print(x_bool.dtype)

输出:

tensor([1, 2, 3], dtype=torch.int32)
torch.int32
tensor([True, True, True])
torch.bool

5.4. 使用 tensor.to() 方法

tensor.to() 是一个更通用的方法,可以用于设备(CPU/GPU)和类型的转换。

5.4.1. 转换数据类型

# 转换为双精度浮点类型
x_double = x.to(torch.float64)
print(x_double)
print(x_double.dtype)

输出:

tensor([1., 2., 3.], dtype=torch.float64)
torch.float64

5.4.2. 同时转换设备和数据类型

# 转换为 GPU 上的双精度浮点类型
if torch.cuda.is_available():x_gpu = x.to(device='cuda', dtype=torch.float64)print(x_gpu)print(x_gpu.dtype)

5.5. 总结

方法用途
tensor.type(torch.DoubleTensor)将张量转换为指定类型(如 torch.float64)。
tensor.double()将张量转换为双精度浮点类型(torch.float64)。
tensor.float()将张量转换为单精度浮点类型(torch.float32)。
tensor.int()将张量转换为整型(torch.int32)。
tensor.to(dtype=…)通用方法,支持设备转换和类型转换。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/72547.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于asp.net实现的连锁餐厅收银系统[包运行成功+永久免费答疑辅导]

基于ASP.NET实现的连锁餐厅收银系统背景,可以从以下几个方面进行阐述: 一、技术背景 ASP.NET框架的普及与优势: ASP.NET是微软开发的一种用于构建Web应用程序的框架,它基于.NET Framework,提供了丰富的类库和开发工具…

PyTorch 深度学习实战(11):强化学习与深度 Q 网络(DQN)

在之前的文章中,我们介绍了神经网络、卷积神经网络(CNN)、循环神经网络(RNN)、Transformer 等多种深度学习模型,并应用于图像分类、文本分类、时间序列预测等任务。本文将介绍强化学习的基本概念&#xff0…

92.HarmonyOS NEXT开发学习路径与最佳实践总结:构建高质量应用

温馨提示:本篇博客的详细代码已发布到 git : https://gitcode.com/nutpi/HarmonyosNext 可以下载运行哦! HarmonyOS NEXT开发学习路径与最佳实践总结:构建高质量应用 文章目录 HarmonyOS NEXT开发学习路径与最佳实践总结:构建高质…

HarmonyOS-应用程序框架基础

应用程序框架与应用模型的区别 应用框架可以看做是应用模型的一种实现方式,开发人员可以用应用模型来描述应用程序的结构和行为的描述,然后使用应用程序框架来实现这些描述。 应用模型 应用模型是一个应用程序的模型,它是一种抽象的描述&a…

审批工作流系统xFlow

WorkFlow-审批流程系统 该项目为完全开源免费项目 可用于学习或搭建初始化审批流程系统 希望有用的小伙伴记得点个免费的star gitee仓库地址 仿钉钉飞书工作审批流系统 介绍 前端技术栈: vue3 ts vite arcodesign eslint 后端技术栈:springbootspring mvc mybatis mavenmysq…

数据传输对象 DTO

1. DTO 数据传输对象(DTO, Data Transfer Object)是一种设计模式,用于在不同系统或应用层之间封装和传输数据。它通常用于解耦领域模型(如数据库实体)和外部接口(如API请求/响应),避…

本地算力部署大模型详细流程(二)

1、前景回顾 上一篇我们通过ollama本地部署了一个DeepSeek,因为没有前端操作页面,我们只能使用cmd的方式和deepseek对话体验感并不是很好,下面我们通过Docker部署一个前端页面(Open WebUI) Open WebUI地址:…

django+vue3实现前后端大文件分片下载

效果: 大文件分片下载支持的功能: 展示目标文件信息提高下载速度:通过并发请求多个块,可以更有效地利用网络带宽断点续传:支持暂停后从已下载部分继续,无需重新开始错误恢复:单个块下载失败只…

matlab中如何集成使用python

在 MATLAB 中集成使用 Python 可以通过调用 Python 脚本或函数来实现。MATLAB 提供了 py 模块来直接调用 Python 代码。以下是一个简单的示例,展示如何在 MATLAB 中调用 Python 函数。 示例:在 MATLAB 中调用 Python 函数 1. 编写 Python 函数 首先&a…

ICMP、UDP以及IP、ARP报文包的仲裁处理

在之前的章节中,笔者就UDP、ICMP、IP、ARP、MAC层以及巨型帧等做了详细介绍以及代码实现及仿真,从本章节开始,笔者将就各个模块组合在一起,实现UDP协议栈的整体收发,在实现模块的整体组合之前,还需要考虑一…

【大模型学习】第十九章 什么是迁移学习

目录 1. 迁移学习的起源背景 1.1 传统机器学习的问题 1.2 迁移学习的提出背景 2. 什么是迁移学习 2.1 迁移学习的定义 2.2 生活实例解释 3. 技术要点与原理 3.1 迁移学习方法分类 3.1.1 基于特征的迁移学习(Feature-based Transfer) 案例说明 代码示例 3.1.2 基于…

基于大模型的分泌性中耳炎全流程预测与治疗管理研究报告

目录 一、引言 1.1 研究背景与意义 1.2 研究目的与目标 1.3 研究方法与创新点 二、分泌性中耳炎概述 2.1 疾病定义与特征 2.2 发病原因与机制 2.3 疾病危害与影响 三、大模型技术原理与应用现状 3.1 大模型基本原理 3.2 在医疗领域的应用案例 3.3 选择大模型预测分…

【NLP 38、实践 ⑩ NER 命名实体识别任务 Bert 实现】

去做具体的事,然后稳稳托举自己 —— 25.3.17 数据文件: 通过网盘分享的文件:Ner命名实体识别任务 链接: https://pan.baidu.com/s/1fUiin2um4PCS5i91V9dJFA?pwdyc6u 提取码: yc6u --来自百度网盘超级会员v3的分享 一、配置文件 config.py …

蓝桥杯学习-11栈

11栈 先进后出 例题–蓝桥19877 用数组来设置栈 1.向栈顶插入元素--top位置标记元素 2.删除栈顶元素--top指针减减 3.输出栈顶元素--输出top位置元素使用arraylist import java.util.ArrayList; import java.util.Scanner;public class Main {public static void main(Str…

Linux 蓝牙音频软件栈实现分析

Linux 蓝牙音频软件栈实现分析 蓝牙协议栈简介蓝牙控制器探测BlueZ 插件系统及音频插件蓝牙协议栈简介 蓝牙协议栈是实现蓝牙通信功能的软件架构,它由多个层次组成,每一层负责特定的功能。蓝牙协议栈的设计遵循蓝牙标准 (由蓝牙技术联盟,Bluetooth SIG 定义),支持多种蓝牙…

JetBrains(全家桶: IDEA、WebStorm、GoLand、PyCharm) 2024.3+ 2025 版免费体验方案

JetBrains(全家桶: IDEA、WebStorm、GoLand、PyCharm) 2024.3 2025 版免费体验方案 前言 JetBrains IDE 是许多开发者的主力工具,但从 2024.02 版本起,JetBrains 调整了试用政策,新用户不再享有默认的 30 天免费试用…

1.8PageTable

页表的作用 虚拟地址空间映射:页表记录了进程的虚拟页号到物理页号的映射关系。每个进程都有自己的页表,操作系统为每个进程维护一个独立的页表。内存管理:页表用于实现虚拟内存管理,支持进程的虚拟地址空间和物理地址空间之间的…

Prosys OPC UA Gateway:实现 OPC Classic 与 OPC UA 无缝连接

在工业自动化的数字化转型中,设备与系统之间的高效通信至关重要。然而,许多企业仍依赖于基于 COM/DCOM 技术的 OPC 产品,这给与现代化的 OPC UA 架构的集成带来了挑战。 Prosys OPC UA Gateway 正是为解决这一问题而生,它作为一款…

数据结构------线性表

一、线性表顺序存储详解 (一)线性表核心概念 1. 结构定义 // 数据元素类型 typedef struct person {char name[32];char sex;int age;int score; } DATATYPE;// 顺序表结构 typedef struct list {DATATYPE *head; // 存储空间基地址int tlen; …

【WPF】在System.Drawing.Rectangle中限制鼠标保持在Rectangle中移动?

方案一,在OnMouseMove方法限制 在WPF应用程序中,鼠标在移动过程中保持在这个矩形区域内,可以通过监听鼠标的移动事件并根据鼠标的当前位置调整其坐标来实现。不过需要注意的是,WPF原生使用的是System.Windows.Rect而不是System.D…