【Python 数据结构 10.二叉树】

目录

一、二叉树的基本概念

1.二叉树的定义

2.二叉树的特点

3.特殊的二叉树

Ⅰ、斜树

Ⅱ、满二叉树

Ⅲ、完全二叉树

Ⅳ、完全二叉树和满二叉树的区别

4.二叉树的性质

5.二叉树的顺序存储

Ⅰ、完全二叉树

Ⅱ、非完全二叉树

Ⅲ、稀疏二叉树

6.二叉树的链式存储

7.二叉树的遍历概念

8.二叉树的前序遍历

9.二叉树的中序遍历

10.二叉树的后序遍历

11.二叉树的层序遍历

二、Python中的二叉树

1.树的结点定义

2.树的定义

Ⅰ、初始化

Ⅱ、根据给定的结点ID从树结构中获取对应的结点

Ⅲ、访问函数,打印元素结点值

Ⅳ、根据数组创建二叉树

Ⅴ、先序遍历

Ⅵ、中序遍历

Ⅶ、后序遍历

三、实战

1.144. 二叉树的前序遍历

方法一 递归

思路与算法

​编辑

方法二 用栈 Stack 实现迭代遍历

思路与算法

2.94. 二叉树的中序遍历

方法一 递归

思路与算法

方法二 用栈实现迭代 

思路与算法

3.145. 二叉树的后序遍历

方法一 递归

思路与算法

方法二 用栈实现迭代 

思路与算法


等你读懂了相遇的意义,有了隔阂别放弃

                                                        —— 25.3.8

一、二叉树的基本概念

1.二叉树的定义

        二叉树是 n(n ≥ 0) 个结点组成的有限集合,这个集合要么是空集(当 n 等于 0 时),要么是由一个根节点和两棵互不相交的二叉树组成,其中这两棵互不相交的二叉树被称为根节点的左子树和右子树

        如图所示,2 是 1 的左子树,3 是 1 的右子树;同时,4 和 5 分别是 2 的左右子树,6 和 7分别是 3 的左右子树


2.二叉树的特点

        二叉树是一种树,它有如下几个特征:

        ① 每个结点最多二棵子树,即每个结点的孩子结点个数为 0、1、2.

        ② 这两棵子树是有顺序的,分别叫:左子树 和 右子树,就像左手和右手一样,是不能颠倒
的。

        ③ 如果只有一棵子树的情况,也需要区分顺序,如图所示:

b 是 a 的左子树         c 是 a 的右子树


3.特殊的二叉树

Ⅰ、斜树

        所有结点都只有左子树的二叉树,被称为左斜树

        所有结点都只有右子树的二叉树,被称为右斜树

        斜树有点类似 线性表,所以线性表可以理解为一种特殊形式的树


Ⅱ、满二叉树

        对于一棵二叉树,如果它的所有根结点和内部结点都存在左右子树,且所有叶子结点都在同一层,这样的树就是满二叉树

满二叉树有如下几个特点

        ① 叶子节点一定在最后一层

        ② 非叶子结点的度为 2

        ③ 深度相同的二叉树中,满二叉树的结点个数最多,为 2 ^ h - 1(其中 h 代表树的深度)


Ⅲ、完全二叉树

        对一颗具有 n 个结点的二叉树,按照层序进行编号,如果编号 i 的结点 和 同样深度的满二叉树中的编号 i 的结点在二叉树中,位置完全相同则被称为 完全二叉树


Ⅳ、完全二叉树和满二叉树的区别

        满二叉树一定是完全二叉树,而完全二叉树则不一定是满二叉树,完全二叉树有如下几个特
点:

        ① 叶子结点只能出现在最下面两层

        ② 最下层的叶子结点,一定是集中在左边的连续位置,倒数第二层如果有叶子结点一定集中在右边的连续位置

        ③ 如果某个结点度为 1,则只有左子树,即 不存在只有右子树 的情况

        ④ 同样结点数的二叉树,完全二叉树的深度最小

        如下图所示,就不是一棵完全二叉树,因为5号结点没有右子树,但是6号结点是有左子树的,不满足上述第 2 点。


4.二叉树的性质

        ① 二叉树的第 i (i >= 1) 层上最多 2 ^ (i - 1) 个结点;

        ② 深度为 h 的二叉树至多 2 ^ h - 1 个结点;

        ③ n个结点的完全二叉树的深度为 floor(log2n) + 1(其中 floor(x) 代表对 x 取下整);


5.二叉树的顺序存储

        二叉树的顺序存储就是指:利用顺序表对二叉树进行存储。结点的存储位置即顺序表的索引,能够体现结点之间的逻辑关系比如父结点和孩子结点之间的关系,左右兄弟结点之间的关系 等。

Ⅰ、完全二叉树

        编号代表了顺序表索引的绝对位置,映射后如下:

        为了方便,将顺序表索引为 0 的位置留空

        当知道某个结点在顺序表中的索引 x,就可以知道它左右儿子的索引分别为 2x 和 2x + 1.反之,当知道某个结点的索引 x,也能知道其父节点的索引为 floor(x / 2)


Ⅱ、非完全二叉树

        对于非完全二叉树,只需要将对应不存在的结点设置为空即可

        编号代表了顺序表索引的绝对位置,映射后如下:


Ⅲ、稀疏二叉树

        对于较为稀疏的二叉树,就会有如下情况出现,这时候如果用这种方式进行存储,就比较浪费内存了

        编号代表了顺序表索引的绝对位置,映射后如下:

        这种情况下,为了提升内存利用率,我们可以采用链表进行存储


6.二叉树的链式存储

        二叉树每个结点至多有两个孩子结点,所以对于每个结点设置一个数据域(data) 和 两个指针域(left 和 right) 即可。指针域 分别指向 左孩子结点 和 右孩子结点。


7.二叉树的遍历概念

        二叉树的遍历是指从根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点访问一次且仅被访问一次。

        对于线性表的遍历,要么从头到尾,要么从尾到头,遍历方式较为单纯。但是树不一样,它的每个结点都有可能有两个孩子结点,所以遍历的顺序面临着不同的选择。

        二叉树的常用遍历方法,有以下四种:前序遍历、中序遍历、后序遍历、层序遍历。

        编号代表了顺序表索引的绝对位置,映射后如下:


8.二叉树的前序遍历

        如果二叉树为空则直接返回,否则先访问根结点,再递归前序遍历左子树,再递归前序遍历右子树(根、左、右)前序遍历的结果如下:a、b、d、g、h、c、e、f、i


9.二叉树的中序遍历

        如果二叉树为空则直接返回,否则先递归中序遍历左子树,再访问根结点,再递归中序遍历右子树(左、根、右)中序遍历的结果如下:g、d、h、b、a、e、c、i、f


10.二叉树的后序遍历

        如果二叉树为空则直接返回,否则先递归后遍历左子树,再递归后序遍历右子树,再访问根结点(左、右、根)后序遍历的结果如下:g、h、d、b、e、i、f、c、a


11.二叉树的层序遍历

        如果二叉树为空直接返回,否则依次从树的第一层开始,从上至下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。图中二叉树层序遍历的结果为:a、b、c、d、e、f、g、h、i


二、Python中的二叉树

1.树的结点定义

val:存放当前结点的value值

left:存放当前节点的左孩子

right:存放当前节点的右孩子 

class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = right

2.树的定义

Ⅰ、初始化

接收参数 maxNodes,传入结点最大数目

列表推导式:

class Tree:def __init__(self, maxNodes):self.root = Noneself.nodes = [TreeNode() for i in range(maxNodes)]self.nodeSize = maxNodes

Ⅱ、根据给定的结点ID从树结构中获取对应的结点

    # 根据给定的节点ID从树结构中获取对应的节点def GetTreeNode(self, id):return self.nodes[id]

Ⅲ、访问函数,打印元素结点值

    # 访问函数,打印元素结点的值def visit(self, node):print(node.val, end=' ')

Ⅳ、根据数组创建二叉树

    # 传入一个数组,根据数组创建二叉树def Create(self, arr, size, nodeId):if nodeId >= size or arr[nodeId] == None:return NonenowNode = self.GetTreeNode(nodeId)nowNode.val = arr[nodeId]nowNode.left = self.Create(arr, size, 2 * nodeId)nowNode.right = self.Create(arr, size, 2 * nodeId + 1)return nowNode

Ⅴ、先序遍历

    # 先序遍历def PreOrder(self, node):if node != None:self.visit(node)self.PreOrder(node.left)self.PreOrder(node.right)def preOrderTraversal(self):self.PreOrder(self.root)print('')

Ⅵ、中序遍历

    # 中序遍历def InOrder(self, node):if node != None:self.InOrder(node.left)self.visit(node)self.InOrder(node.right)def InOrderTraversal(self):self.InOrder(self.root)print('')

Ⅶ、后序遍历

    # 后序遍历def PostOrder(self, node):if node != None:self.PostOrder(node.left)self.PostOrder(node.right)self.visit(node)def PostTraversal(self):self.PostOrder(self.root)print('')

Ⅷ、测试代码 

def Test():arr = [None, 'a', 'b', 'c', 'd', None, 'e', 'f', 'g', 'h', None, None, None, None, 'i']tree = Tree(len(arr))tree.CreateTree(arr)tree.preOrderTraversal()tree.InOrderTraversal()tree.PostTraversal()Test()


三、实战

1.144. 二叉树的前序遍历

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

示例 1:

输入:root = [1,null,2,3]

输出:[1,2,3]

解释:

示例 2:

输入:root = [1,2,3,4,5,null,8,null,null,6,7,9]

输出:[1,2,4,5,6,7,3,8,9]

解释:

示例 3:

输入:root = []

输出:[]

示例 4:

输入:root = [1]

输出:[1]

提示:

  • 树中节点数目在范围 [0, 100] 内
  • -100 <= Node.val <= 100

进阶:递归算法很简单,你可以通过迭代算法完成吗?

方法一 递归

思路与算法
  • 前序遍历遵循“根 -> 左 -> 右”的顺序。
  • 递归函数 preorder 的核心逻辑是:
    1. 如果当前节点 root 不为空,则将其值加入结果列表 ret
    2. 递归遍历左子树。
    3. 递归遍历右子树。
  • 递归终止条件是当前节点为空(root is None),此时直接返回。
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def preorder(self, root:Optional[TreeNode], ret:List[int]):if root:ret.append(root.val)self.preorder(root.left, ret)self.preorder(root.right, ret)def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:ret = []self.preorder(root, ret)return ret


方法二 用栈 Stack 实现迭代遍历

思路与算法
  • 前序遍历遵循“根 -> 左 -> 右”的顺序。
  • 使用栈来模拟递归的过程:
    1. 从根节点开始,将当前节点的值加入结果列表 res,并将当前节点入栈。
    2. 遍历左子树,直到左子树为空。
    3. 回溯到上一个节点(通过栈弹出),并遍历其右子树。
  • 重复上述过程,直到栈为空且当前节点为空。


2.94. 二叉树的中序遍历

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。

示例 1:

输入:root = [1,null,2,3]
输出:[1,3,2]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

提示:

  • 树中节点数目在范围 [0, 100] 内
  • -100 <= Node.val <= 100

进阶: 递归算法很简单,你可以通过迭代算法完成吗?

方法一 递归

思路与算法
  • 后序遍历遵循“左 -> 右 -> 根”的顺序。
  • 递归函数 PostOrder 的核心逻辑是:
    1. 如果当前节点 root 不为空,则递归遍历其左子树。
    2. 递归遍历其右子树。
    3. 将当前节点的值加入结果列表 res
  • 递归终止条件是当前节点为空(root is None),此时直接返回。
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def PostOrder(self, root:Optional[TreeNode], res:List[int]):if root:self.PostOrder(root.left, res)self.PostOrder(root.right, res)res.append(root.val)def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:res = []self.PostOrder(root, res)return res


方法二 用栈实现迭代 

思路与算法
  • 中序遍历遵循“左 -> 根 -> 右”的顺序。
  • 使用栈来模拟递归的过程:
    1. 从根节点开始,将当前节点入栈,并遍历其左子树,直到左子树为空。
    2. 回溯到上一个节点(通过栈弹出),将其值加入结果列表 res
    3. 遍历其右子树。
  • 重复上述过程,直到栈为空且当前节点为空。
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:res, stack = [], []while root or stack:if root:stack.append(root)root = root.leftelse:  root = stack.pop()res.append(root.val)root = root.rightreturn res

 


3.145. 二叉树的后序遍历

给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 

示例 1:

输入:root = [1,null,2,3]

输出:[3,2,1]

解释:

示例 2:

输入:root = [1,2,3,4,5,null,8,null,null,6,7,9]

输出:[4,6,7,5,2,9,8,3,1]

解释:

示例 3:

输入:root = []

输出:[]

示例 4:

输入:root = [1]

输出:[1]

提示:

  • 树中节点的数目在范围 [0, 100] 内
  • -100 <= Node.val <= 100

进阶:递归算法很简单,你可以通过迭代算法完成吗?

方法一 递归

思路与算法
  • 后序遍历遵循“左 -> 右 -> 根”的顺序。
  • 递归函数 postOrder 的核心逻辑是:
    1. 如果当前节点 root 不为空,则递归遍历其左子树。
    2. 递归遍历其右子树。
    3. 将当前节点的值加入结果列表 res
  • 递归终止条件是当前节点为空(root is None),此时直接返回。
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def postOrder(self, root:TreeNode, res):if root is None:returnself.postOrder(root.left, res)self.postOrder(root.right, res)res.append(root.val)def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:res = []self.postOrder(root, res)return res


方法二 用栈实现迭代 

思路与算法
  • 后序遍历遵循“左 -> 右 -> 根”的顺序。
  • 使用栈来模拟递归的过程:
    1. 从根节点开始,将当前节点入栈,并遍历其左子树,直到左子树为空。
    2. 如果左子树为空,则遍历其右子树。
    3. 回溯到上一个节点(通过栈弹出),将其值加入结果列表 res
    4. 如果当前节点是栈顶节点的左子节点,则继续遍历栈顶节点的右子树;否则,结束当前分支的遍历。
  • 重复上述过程,直到栈为空且当前节点为空。
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:res = []stack = []node = rootwhile stack or node:while node:stack.append(node)if node.left != None:node = node.leftelse:node = node.rightnode = stack.pop()res.append(node.val)if stack and stack[-1].left == node:node = stack[-1].rightelse:node = Nonereturn res

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/71743.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows 系统 Docker Desktop 入门教程:从零开始掌握容器化技术

文章目录 前言一、Docker 简介二、Docker Desktop 安装2.1 系统要求2.2 安装步骤 三、Docker 基本概念四、Docker 常用命令五、实战&#xff1a;运行你的第一个容器5.1 拉取并运行 Nginx 容器5.2 查看容器日志5.3 停止并删除容器 六、总结 前言 随着云计算和微服务架构的普及&…

可变参数与递归

可变参数与递归 可变参数 package method; ​ public class Demo03 {public static void main(String[] args) {Demo03 demo03new Demo03();demo03.test(1,2,3);​}public void test (int... i){System.out.println(i[0]);//1System.out.println(i[1]);//2System.out.println(…

【redis】全局命令exists、del、expire、ttl(惰性删除和定期删除)

exists——判定 key 是否存在 语法&#xff1a; exists key [key...] # 返回值&#xff1a;key 存在的个数针对多个 key 来说&#xff0c;是非常有用的时间复杂度 O ( 1 ) O(1) O(1) Redis 组织这些 key 就是按照哈希表的方式来组织的。Redis 支持很多数据结构指的是 value …

系统架构设计师—系统架构设计篇—特定领域软件体系结构

文章目录 概述领域分类垂直域水平域 系统模型基本活动参与角色 概述 特定领域软件架构&#xff08;Domain Specific Software Architecture&#xff0c;DSSA&#xff09;是在一个特定应用领域中&#xff0c;为一组应用提供组织结构参考的标准团建体系结构。 领域分类 垂直域…

OpenManus:优点突出,短板也明显

最近&#xff0c;OpenManus 在 AI 领域掀起了一阵热潮。作为开源版的智能代理软件&#xff0c;它自诞生起就备受瞩目。今天&#xff0c;咱们就来深入聊聊 OpenManus 在实际测试中的表现&#xff0c;看看它到底有哪些过人之处&#xff0c;又存在哪些不足。​ 优点大起底​ 开源…

VUE3项目的文档结构分析

1. Vue 3 项目的文档结构 Vue 3 项目通常基于 Vue CLI 或 Vite 等工具创建&#xff0c;其文档结构如下&#xff1a; 常见目录结构 my-vue-project/ ├── public/ # 静态资源目录 │ ├── index.html # 入口页面 ├── src/ …

P8662 [蓝桥杯 2018 省 AB] 全球变暖--DFS

P8662 [蓝桥杯 2018 省 AB] 全球变暖--dfs 题目 解析讲下DFS代码 题目 解析 这道题的思路就是遍历所有岛屿&#xff0c;判断每一块陆地是否会沉没。对于这种图的遍历&#xff0c;我们首先应该想到DFS。 代码的注意思想就是&#xff0c;在主函数中遍历找出所有岛屿&#xff0c…

mmseg

系列文章目录 文章目录 系列文章目录bug bug File "/public/home/rsinfo/project/mmsegmentation/mmseg/__init__.py", line 61, in <module>assert (mmcv_min_version < mmcv_version < mmcv_max_version), \ AssertionError: MMCV2.2.0 is used but i…

AI多模态教程:DeepSeek多模态模型解析及实践指南

AIGCmagic社区知识星球是国内首个以AIGC全栈技术与商业变现为主线的学习交流平台&#xff0c;涉及AI绘画、AI视频、大模型、AI多模态、数字人以及全行业AIGC赋能等100应用方向。星球内部包含海量学习资源、专业问答、前沿资讯、内推招聘、AI课程、AIGC模型、AIGC数据集和源码等…

【银河麒麟高级服务器操作系统实例】虚拟机桥接网络问题分析及处理

更多银河麒麟操作系统产品及技术讨论&#xff0c;欢迎加入银河麒麟操作系统官方论坛 https://forum.kylinos.cn 了解更多银河麒麟操作系统全新产品&#xff0c;请点击访问 麒麟软件产品专区&#xff1a;https://product.kylinos.cn 开发者专区&#xff1a;https://developer…

使用腾讯ncnn加速推理yolo v9对比opencv dnn

前面博客 【opencv dnn模块 示例(25) 目标检测 object_detection 之 yolov9 介】 绍了 yolov9 详细使用方式&#xff0c;重参数化、导出端到端模型&#xff0c;使用 torch、opencv、tensorrt 以及 paddle 的测试。 由于存在移动端推理部署的需求&#xff0c;需要进行加速处理&…

前端小食堂 | Day10 - 前端路由の时空裂隙

🕳️ 今日穿梭指南:两种维度の路由宇宙 1. Hash 模式:锚点の量子隧道 // 手动创建路由监听器 window.addEventListener(hashchange, () => {const path = location.hash.slice(1) || /; console.log(进入哈希宇宙:, path); renderComponent(path); }); // 编程…

C语言学习笔记-进阶(7)字符串函数3

1. strstr的使用和模拟实现 char * strstr ( const char * str1, const char * str2); Returns a pointer to the first occurrence of str2 in str1, or a null pointer if str2 is not part of str1. &#xff08;函数返回字符串str2在字符串str1中第⼀次出现的位置&#x…

HarmonyOS Next 属性动画和转场动画

HarmonyOS Next 属性动画和转场动画 在鸿蒙应用开发中&#xff0c;动画是提升用户体验的关键要素。通过巧妙运用动画&#xff0c;我们能让应用界面更加生动、交互更加流畅&#xff0c;从而吸引用户的注意力并增强其使用粘性。鸿蒙系统为开发者提供了丰富且强大的动画开发能力&…

PHP:phpstudy无法启动MySQL服务问题解决

文章目录 一、问题说明二、解决问题 一、问题说明 我的Windows10系统&#xff0c;之前安装过MySQL5.7的版本。 然后&#xff0c;用phpstudy安装MySQL8&#xff0c;并启动MySQL8。 发生无法启动的情况。 二、解决问题 1、删除本地MySQL7的服务 net stop MySQL //这里的服务名…

Nginx(基础安装+配置文件)

目录 一.Nginx基础 1.基础知识点 2.异步非阻塞机制 二.Nginx安装 2.1安装nginx3种方式 1.包管理工具安装&#xff08;yum/apt&#xff09; 2.本地包安装&#xff08;rpm/dpkg&#xff09; 3.源码编译安装 3.1 源码编译安装nginx流程&#xff08;ubuntu&#xff09; 1.…

C++ Windows下屏幕截图

屏幕截图核心代码&#xff08;如果要求高帧率&#xff0c;请使用DxGI&#xff09;&#xff1a; // RGB到YUV的转换公式 #define RGB_TO_Y(r, g, b) ((int)((0.299 * (r)) (0.587 * (g)) (0.114 * (b)))) #define RGB_TO_U(r, g, b) ((int)((-0.169 * (r)) - (0.331 * (g)) …

修改jupyter notebook的工作空间

今天&#xff0c;我之前R配置jupyter工作空间&#xff0c;讲了各种语言内核分配不同的工作空间&#xff0c;虽然是方便管理&#xff0c;但有个问题就是需要每次都进入C盘的配置文件找到notebook的工作空间设置路径打开修改嘛。 因此&#xff0c;今天我编写了一个python脚本&am…

江科大51单片机笔记【9】DS1302时钟可调时钟(下)

在写代码前&#xff0c;记得把上一节的跳线帽给插回去&#xff0c;不然LCD无法显示 一.DS1302时钟 1.编写DS1302.c文件 &#xff08;1&#xff09;重新对端口定义名字 sbit DS1302_SCLKP3^6; sbit DS1302_IOP3^4; sbit DS1302_CEP3^5;&#xff08;2&#xff09;初始化 因为…

电商行业门店管理软件架构设计与数据可视化实践

一、行业痛点与核心诉求 在电商多平台运营成为主流的背景下,企业普遍面临三大管理难题: ​数据碎片化:某头部服饰品牌2023年运营报告显示,其分布在8个平台的162家门店,日均产生23万条订单数据,但财务部门需要5个工作日才能完成跨平台利润核算。​成本核算失真:行业调研…