计算机视觉(opencv-python)入门之图像的读取,显示,与保存

        在计算机视觉领域,Python的cv2库是一个不可或缺的工具,它提供了丰富的图像处理功能。作为OpenCV的Python接口,cv2使得图像处理的实现变得简单而高效。

 示例图片


目录

opencv获取方式

图像基本知识

颜色空间

RGB

HSV

图像格式

BMP格式

  TIFF格式

GIF格式

JPEG格式

PNG格式

读取图像cv2.imread()

  imread各flags参数含义详解

读取结果说明

Ndarray说明

获取单通道颜色矩阵

显示图像

使用cv2.imshow()显示图像

cv2.waitKey()

cv2.destroyAllWindows()

使用plt.imshow()显示图像

保存图像cv2.imwrite()

总结


 opencv获取方式

pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple opencv-python

图像基本知识

颜色空间

        颜色空间是一种用来表示颜色的数学模型,它描述了如何将颜色信息数字化,以便于计算机进行处理和分析。在计算机视觉和图像处理领域,常见的颜色空间包括RGB、HSV等。

RGB

        RGB颜色空间是最常用的颜色空间之一,它基于红(Red)、绿(Green)、蓝(Blue)三种基本颜色,通过调整这三种颜色的强度和组合,可以产生各种颜色。

        在RGB颜色空间中,每个颜色的强度值范围通常在0到255之间,分别代表红、绿、蓝三种颜色的亮度。通过调整这些亮度值,可以混合出各种颜色。例如,当RGB三个通道的强度值都为0时,表示黑色;当RGB三个通道的强度值都为255时,表示白色。

RGB颜色调色板 

        HEX是一种常用于网页设计和图像处理中的颜色表示方法,它通过六位十六进制数来表示RGB颜色空间中的颜色。在HEX表示法中,前两位代表红色强度,中间两位代表绿色强度,最后两位代表蓝色强度。 

        通过改变这三个值的不同组合,可以得到一个包含2^24=16777216种颜色的调色板,但是人眼可见的却远远少于这个数字。

        例如我们总是认为乌鸦是黑色的,但其实在不同的光照条件下,乌鸦的羽毛可能会呈现出彩色的光泽。这正是因为RGB颜色空间虽然能够表示大量的颜色,但人眼的颜色感知却受到环境、光照等多种因素的影响。

 乌鸦羽毛五彩斑斓的黑

HSV

        HSV(Hue, Saturation, Value)是根据颜色的直观特性 色调(Hue)、饱和度(Saturation)和明度(Value)三个参数。由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model)。

 HSV分量可以通过RGB各分量值转化得到,计算公式如下:

其中,R,G,B分别为RGB颜色空间中的3个分量。 


图像格式

常见的图像格式有BMP格式,TiIFF格式,GIF格式,JPEG格式,PNG格式等。

BMP格式

        BMP格式是windows环境中的一种标准(但很多microsoft应用程序不支持它),这种格式采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BMP文件所占用的空间很大。BMP文件的图像深度可选lbit、4bit、8bit及24bit。BMP文件存储数据时,图像的扫描方式是按从左到右、从下到上的顺序。由于BMP文件格式是Windows环境中交换与图有关的数据的一种标准,因此在Windows环境中运行的图形图像软件都支持BMP图像格式。

  TIFF格式

        TIFF格式是一种灵活的图像存储格式,广泛应用于印刷、出版和扫描领域。它支持多种色彩模式,包括灰度、RGB、CMYK等,并允许无损压缩,以在保证图像质量的同时减少文件大小。TIFF格式还支持多层图像和透明度,使其在处理复杂图像时具有显著优势。此外,TIFF格式具有良好的兼容性,能够被多种图像编辑和处理软件所支持。

GIF格式

        GIF格式是一种广泛用于网络传输的图像格式。GIF格式以其独特的无损压缩技术和支持透明背景的特性而著称,这使得GIF图像在保持高质量的同时,文件大小相对较小,非常适合在网络上快速加载和显示。此外,GIF格式还支持动画效果,能够创建简单的动态图像,这一特性使其在社交媒体和网页设计中备受欢迎。尽管GIF格式的色彩深度有限,通常只能显示256种颜色,但这并不妨碍它在特定应用场景下的广泛应用。

JPEG格式

        JPEG格式源自对相对静止灰度或彩色图像的一种压缩标准,在使用有损压缩方法时可节省的空间是相当大的,目前数码相机中均使用这种格式。尽管JPEG格式采用有损压缩,可能会导致一定的图像质量损失,但通过调整压缩级别,用户可以在图像质量和文件大小之间找到理想的平衡点。这种灵活性使得JPEG格式成为存储和传输大量图片的优选方案,尤其是在存储空间有限或网络带宽受限的情况下。此外,JPEG格式还具有良好的跨平台兼容性,几乎可以被所有主流的图像查看器和编辑器所支持。

PNG格式

        PNG是一种无损压缩的图像格式,支持透明背景和Alpha通道,使得图像在保持高质量的同时,还能展现出更为丰富的层次感和细腻度。与GIF格式相比,PNG格式在色彩深度上不再受限,能够显示1600多万种颜色,这为图像的色彩表现提供了更广阔的空间。此外,PNG格式还支持多种图像编辑功能,如伽玛校正、文本注释等,进一步增强了其在图像处理和编辑领域的实用性。由于其无损压缩的特性,PNG格式在需要保持图像原始质量和细节的应用场景中,如网页设计中的图标、按钮等,具有不可替代的优势。

需要注意的是PNG格式的图片相对于其他格式图片来说,除了RGB三通道以外还多了一层alpha通道,这一层alpha通道使得PNG图片支持透明度设置,即可以实现图片的半透明效果,或者是抠图后的图片背景透明化。


读取图像cv2.imread()

#cv2.imread读取图像
import cv2
image=cv2.imread(filename='test.jpg',flags=cv2.IMREAD_UNCHANGED)
#filename:图像文件的路径
#flags:#cv2.IMREAD_COLOR:BGR格式彩色图像 #cv2.IMREAD_GRAYSCALE:灰度图像,是单通道的 #cv2.IMREAD_UNCHANGED:包括alpha通道,即透明通道#cv2.IMREAD_COLOR_BGR,以BGR格式读取图像,彩色#cv2.IMREAD_COLOR_RGB,以RGB格式读取图像,彩色#cv2.IMREAD_ANYDEPTH:读取任意深度的图像#cv2.IMREAD_ANYCOLOR:读取任意颜色的图像#cv2.IMREAD_LOAD_GDAL:使用GDAL读取图像#cv2.IMREAD_REDUCED_COLOR_2:读取1/2的彩色图像#cv2.IMREAD_REDUCED_COLOR_4:读取1/4的彩色图像#cv2.IMREAD_REDUCED_COLOR_8:读取1/8的彩色图像#cv2.IMREAD_REDUCED_GRAYSCALE_2:读取1/2的灰度图像#cv2.IMREAD_REDUCED_GRAYSCALE_4:读取1/4的灰度图像#cv2.IMREAD_REDUCED_GRAYSCALE_8:读取1/8的灰度图像#cv2.IMREAD_IGNORE_ORIENTATION:忽略图像的方向信息#cv2.IMREAD_COLOR是默认值,读取的图像是彩色BGR格式相当与cv2.IMREAD_COLOR_BGR
print(image.shape)

  cv2.imread()函数各flags参数含义详解

                cv2.imread()函数只有两个参数,filename与flages,filename指图像文件路径,flags是指定图像读取的方式。

以下是所有flags释义:
         

flags
cv2.IMREAD_COLOR读取彩色图像
cv2.IMREAD_GRAYSCALE读取单通道的灰度图像
cv2.IMREAD_UNCHANGED:按照图像原格式读取图像,若图像是png图像那么包括alpha通道,即透明通道,此时图像是四通道的,若图像不是png格式那么还是三通道。
 cv2.IMREAD_COLOR_BGR以BGR格式读取图像,彩色
 cv2.IMREAD_COLOR_RGB以RGB格式读取图像,彩色
cv2.IMREAD_ANYDEPTH读取任意深度的图像
 cv2.IMREAD_ANYCOLOR读取图像时自动检测并保留图像的原始颜色通道数。
cv2.IMREAD_LOAD_GDAL使用GDAL读取图像。GDAL 是专门用于处理地理空间数据格式的库,如 GeoTIFF、ENVI、HFA 等。
cv2.IMREAD_REDUCED_COLOR_2读取1/2的彩色图像
cv2.IMREAD_REDUCED_COLOR_4读取1/4的彩色图像
 cv2.IMREAD_REDUCED_COLOR_8:读取1/8的彩色图像
cv2.IMREAD_REDUCED_GRAYSCALE_2读取1/2的灰度图像
cv2.IMREAD_REDUCED_GRAYSCALE_4读取1/4的灰度图像
cv2.IMREAD_REDUCED_GRAYSCALE_8读取1/8的灰度图像
cv2.IMREAD_IGNORE_ORIENTATION忽略图像的方向信息

读取结果说明

Ndarray说明

          Ndarray的一般结构为:

[行数,列数,深度]

        其中行和列都是一维数组,我们知道行*列便可以构成矩阵,而深度则用来表示不同的行*列构成的矩阵的在最外层的数组中的索引。简而言之,ndarray就是数组内嵌套矩阵的格式,这样会十分方便理解。

          上述代码中的image为读取结果,由于我们的示例图片是.jpg格式没有alpha通道,所以flags使用cv2.IMREAD_UNCHANGED与cv2.IMREAD_COLOR并没有区别,通道数都为3。

 image的shape:(1161, 1080, 3)

        cv2.imread()函数的结果是ndarray,我们打印出其shape的结果中前两个参数是图像的高与宽,第三个参数是image的维度,这里的维度其实就是图像的RGB通道数。

获取单通道颜色矩阵

        倘若我们想要分别切片获取image的三个通道数对应的颜色矩阵那么我们可以这样写.

blue=image[:,:,0]
green=image[:,:,1]
red=image[:,:,2]
#或者
blue=image[0:1161,0:1080,0]
green=image[0:1161,0:1080,1]
red=image[0:1161,0:1080,2]

           在第一种写法中,这里要说明一下的是,ndarray的切片方法与python的list切片方法一致,切片时有一个特殊用法就是[:],它相当与[0:len(array)]用来直接获取整个数组所有值,倘若你要是不知道某一维这个数组的长度(比如上边我们读取的图像高1161宽1080,直接切片需[0:1161,0:1080]),又想获取整个数组的所有内容,可以使用这种方法。

        当然,为了方便,cv2已经内置了split函数替我们直接获取三个颜色通道的矩阵。

blue,green,red=cv2.split(image)

显示图像

使用cv2.imshow()显示图像

import cv2#opencv读取的格式是BGR
image=cv2.imread('test.jpg')
image=cv2.resize(image,(500,500))#更改一下图像大小,为了方便显示
cv2.imshow('image',image)
cv2.waitKey(0)
cv2.destroyAllWindows()

        这里的image是一个shape为(500,500,3)的ndarray,表示这是一个500x500像素的彩色图像,具有红、绿、蓝三个颜色通道。每个颜色通道都是一个500x500的二维数组。

结果

cv2.waitKey()

        cv2.waitKey()是用来在OpenCV(cv2)库中暂停程序执行并等待用户按键的函数。这个函数通常在显示图像时使用,比如在一个窗口中显示图像后,我们希望程序在用户按下任意键后再继续执行后续操作,这时就可以使用cv2.waitKey()函数。该函数接受一个整数参数,表示等待的毫秒数。如果参数为0,则表示无限期等待,直到用户按下键盘上的任意键。在按下键后,cv2.waitKey()会返回按键的ASCII码值,我们可以根据这个返回值来判断用户按下了哪个键。需要注意的是,在使用cv2.waitKey()之前,必须已经创建了一个图像显示窗口,否则该函数将无法正常工作。

cv2.destroyAllWindows()

      cv2.destroywindows()是用来关闭所有OpenCV创建过的窗口的,这些窗口实际是都是使用python内置库tkinter编写的,先前的tkinter窗口会阻塞主线程。所以,当我们完成图像处理或显示操作后,经常需要关闭这些窗口以释放资源。倘若不将他们关闭当前图像窗口可能无法显示。

使用plt.imshow()显示图像

import cv2#opencv读取的格式是BGR
import matplotlib.pyplot as plt#matplotlib读取的格式是RGB
image=cv2.imread('test.jpg')
image=cv2.resize(image,(500,500))
#使用plt.imshow(),需要先将BGR转化成RGB,这里使用cv2.cvtColor颜色通道转换函数完成
image=cv2.cvtColor(image,cv2.COLOR_RGB2BGR)
plt.axis('off')
plt.imshow(image)

结果

        这里需要注意的是opencv读取的图像时默认格式是BGR,而matplotlib读取的格式是RGB,如果我们在读取图像时不指定读取方式且不使用cv2.cvtColor()通道转换函数将颜色通道转换成RGB的话,那么显示出来的图像的颜色便会怪怪的。。。

        这是因为,matplotlib把原本是红色的通道误认为是蓝色通道,而原本是蓝色的通道则被认为是红色通道。这种颜色通道的错位就会导致图像颜色显示异常、

        但是,无论如何,cv2.imshow与plt.imshow这两个函数在显示图像时,需要传入的都是图像的ndarray数据。

保存图像cv2.imwrite()

#cv2.imwrite保存图像
import cv2
image=cv2.imread(filename='test.jpg',flags=cv2.IMREAD_UNCHANGED)
#图像经过某些变换或操作后需要保存
cv2.imwrite(filename='newImage.jpg',img=image,params=[int(cv2.IMWRITE_JPEG_QUALITY), 50])
#filename:保存图像文件名称
#img:图像颜色矩阵
#params:参数是一个可选的序列(通常是列表或元组),用于传递图像编码和压缩相关的参数。

        当我们需要保存图像时,直接调用cv2.imwrite()函数即可。 

总结

        本文主要介绍了opencv图像的读取与显示,后序还将分享更多相关图像处理技术,以及如何利用cv2进行图像特征提取和匹配。并且还会将所有内容合并到专栏中,免费订阅。

        通过本专栏的学习,读者将能够利用cv2库解决实际的图像处理问题,为计算机视觉项目打下坚实基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/71273.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【SpringBoot】【log】 自定义logback日志配置

前言:默认情况下,SpringBoot内部使用logback作为系统日志实现的框架,将日志输出到控制台,不会写到日志文件。如果在application.properties或application.yml配置,这样只能配置简单的场景,保存路径、日志格…

【开源-线程池(Thread Pool)项目对比】

一些实现**线程池(Thread Pool)**功能的开源项目的对比分析。 线程池功能的开源项目 项目名称语言优点缺点适用场景开源代码链接ThreadPoolC简单易用,代码简洁;适合快速原型开发。功能较为基础,不支持动态调整线程数…

Hive之正则表达式RLIKE详解及示例

目录 一、RLIKE 语法及核心特性 1. 基本语法 2. 核心特性 二、常见业务场景及示例 场景1:过滤包含特定模式的日志(如错误日志) 场景2:验证字段格式(如邮箱、手机号) 场景3:提取复杂文本中…

在Docker中部署DataKit最佳实践

本文主要介绍如何在 Docker 中安装 DataKit。 配置和启动 DataKit 容器 登陆观测云平台,点击「集成」 -「DataKit」 - 「Docker」,然后拷贝第二步的启动命令,启动参数按实际情况配置。 拷贝启动命令: sudo docker run \--hostn…

Mac OS Homebrew更换国内镜像源(中科大;阿里;清华)

omebrew官方的源一般下载包之类的会很慢,所以通常我们都是用国内的镜像源来代替,这样会提高我们的效率。Homebrew主要有四个部分组成: brew、homebrew-core 、homebrew-bottles、homebrew-cask。 代码语言:javascript 代码运行次数&#xf…

React Native 原理

React Native 是一个跨平台移动应用开发框架,它允许开发者使用 JavaScript 和 React 来开发 iOS 和 Android 原生应用。React Native 的核心原理是通过 桥接(Bridge) 技术,使用 JavaScript 来控制原生组件,并将应用逻辑…

实验:k8s+keepalived+nginx+iptables

1、创建两个nginx的pod,app都是nginx nginx1 nginx2 2、创建两个的pod的service 3、配置两台keepalived的调度器和nginx七层反向代理,VIP设置192.168.254.110 keepalived调度器master keepalived调度器backup 两台调度器都配置nginx七层反向代理&#…

火山引擎 DeepSeek R1 API 使用小白教程

一、火山引擎 DeepSeek R1 API 申请 首先需要三个要素: 1)API Key 2)API 地址 3)模型ID 1、首先打开火山引擎的 DeepSeek R1 模型页面 地址:账号登录-火山引擎 2、在页面右下角,找到【推理】按钮&#…

Pytorch使用手册--将 PyTorch 模型导出为 ONNX(专题二十六)

注意 截至 PyTorch 2.1,ONNX 导出器有两个版本。 torch.onnx.dynamo_export 是最新的(仍处于测试阶段)导出器,基于 PyTorch 2.0 发布的 TorchDynamo 技术。 torch.onnx.export 基于 TorchScript 后端,自 PyTorch 1.2.0 起可用。 一、torch.onnx.dynamo_export使用 在 60 …

yolov8_pose模型,使用rknn在安卓RK3568上使用

最近在使用rknn的一些功能,看了看文档以及自己做的一些jni,使用上yolov8_pose的模型. 1.我们先下载一下rknn的模型功能代码,rk有自己做的一套demo 地址:GitHub - airockchip/rknn_model_zooContribute to airockchip/rknn_model_zoo development by creating an account on G…

算法:判断链表是否有环

/*** brief 判断链表是否有环* * 该函数使用快慢指针法来判断链表中是否存在环。* 快指针每次移动两步,慢指针每次移动一步。* 如果链表中存在环,那么快指针最终会追上慢指针;* 如果链表中不存在环,快指针会先到达链表末尾。* * p…

什么是 jQuery

一、jQuery 基础入门 (一)什么是 jQuery jQuery 本质上是一个快速、小巧且功能丰富的 JavaScript 库。它将 JavaScript 中常用的功能代码进行了封装,为开发者提供了一套简洁、高效的 API,涵盖了 HTML 文档遍历与操作、事件处理、…

mysql怎样优化where like ‘%字符串%‘这种模糊匹配的慢sql

一 问题描述 工作中经常遇到这种模糊匹配的慢sql: select * from 表名 where 字段 like %字符串%; 由于前面有%,导致无法走该字段上的索引。 二 解决办法 ① 给该字段创建一个全文索引 CREATE FULLTEXT INDEX 索引名 ON 表名 (字段名); ② 改写sq…

计算机毕业设计Python+DeepSeek-R1大模型游戏推荐系统 Steam游戏推荐系统 游戏可视化 游戏数据分析(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

飞书考勤Excel导入到自己系统

此篇主要用于记录Excel一行中,单条数据的日期拿取,并判断上下班打卡情况。代码可能满足不了大部分需求,目前只够本公司用,如果需要,可以参考。 需要把飞书月度汇总的考勤表导入系统中可以参考下。 下图为需要获取的年…

【AIGC系列】5:视频生成模型数据处理和预训练流程介绍(Sora、MovieGen、HunyuanVideo)

AIGC系列博文: 【AIGC系列】1:自编码器(AutoEncoder, AE) 【AIGC系列】2:DALLE 2模型介绍(内含扩散模型介绍) 【AIGC系列】3:Stable Diffusion模型原理介绍 【AIGC系列】4&#xff1…

鸿蒙启动页开发

鸿蒙启动页开发 1.1 更改应用名称和图标 1.更改应用图标 找到moudle.json5文件,找到应用启动的EntryAbility下面的icon,将原来的图标改成自己设置的即可 2.更改应用名称 3.效果展示 2.1 广告页面开发 3.1 详细介绍 3.1.1 启动页面 import { PrivacyDialog } fr…

傅里叶分析

傅里叶分析之掐死教程(完整版)更新于2014.06.06 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复…

长时间目标跟踪算法(2)-LCT目标跟踪算法

LCT算法的原始论文和源码已开源,原始论文和源码打包下载。 目录 算法简介核心思路与基本原理 2.1 任务分解:平移与尺度估计2.2 时间上下文相关滤波模型2.3 目标外观相关滤波模型2.4 在线随机蕨分类器 实现方案 3.1 关键公式与频域加速3.2 伪代码与流程…

【深度学习】Hopfield网络:模拟联想记忆

Hopfield网络是一种经典的循环神经网络,由物理学家John Hopfield在1982年提出。它的核心功能是模拟联想记忆,类似于人类大脑通过部分信息回忆完整记忆的能力。以下是通俗易懂的解释: 1. 核心思想 想象你看到一张模糊的老照片,虽然…