【R语言】主成分分析与因子分析

一、主成分分析

主成分分析(Principal Component Analysis, PCA)是一种常用的无监督数据降维技术,广泛应用于统计学、数据科学和机器学习等领域。它通过正交化线性变换将(高维)原始数据投影到一个新的坐标系(低维空间),同时保留数据的主要变异信息,使得新坐标系中的第一个坐标轴(主成分1)上的方差最大,第二个坐标轴(主成分2)上的方差次大,并且各个坐标轴之间相互正交(即不相关)。PCA 的目标是通过保留数据的主要变异方向来减少数据的维度,同时尽可能少地丢失信息。

psych扩展包能提供很丰富和有用的函数,它的输出结果也更接近商业统计分析软件,如SAS和SPSS等,所使用的函数为principal()函数

principal()函数

# 准备数据(以 iris 数据集为例)
head(iris)
# 去除标签列,只保留数值列
iris_data <- iris[, 1:4]
head(iris_data)

 principal()函数的nfactors用来指定各种主成分,iris_data里面有4种变量,所以指定为4。

library(psych)
pcal_iris <- principal(iris_data, nfactors=4)
pcal_iris

从上面的结果可知,前三个成分(RC1+RC3+RC2)的累计解释比例(Cumulative Proportion)为99%,前两个成分(RC1+RC3)的累计解释比例(Cumulative Proportion)为72%,所以选择这两个或三个主要成分是合适的。 

pcal_iris1 <- principal(iris_data, nfactors=3)
pcal_iris1

从上面结果可知,当nfactors为3时,累计比例能近似达到100%,说明用三个主成分代替原有变量的信息是足够的。 

二、因子分析

因子分析(Factor Analysis)是一种降维技术,它用于研究变量之间的内在关系,试图通过少数几个“潜在变量”(或称“因子”)来解释多个观测变量之间的相关性,其核心思想是降维结构探测。这些潜在变量是不可直接观测的,但可以通过它们对观测变量的影响来推断。因子分析在心理学、社会学、市场研究、生物学等多个领域都有广泛应用。

根据是否已知潜在结构,可以将因子分析分为探索性因子分析(Exploratory Factor Analysis,EFA)和验证性因子分析(Confirmatory Factor Analysis,CFA)。

1、注意事项

在进行因子分析,需要注意以下两个方面。

保证有足够的样本量。一般认为样本量小于50时,不适合做因子分析;样本量至少在100以上;样本量达到1000时,效果会比较好。而且,样本量的选择还受原始变量数量的影响,一般样本量至少是原始变量数量的5倍以上,10倍更好。

原始变量之间应该要有足够的相关性。如果所有或者大部分原始变量是相互独立或者相关系数都小于0.3,则不能从中提取公共因子,即数据不适合进行因子分析。

原始变量之间的相关性可以使用KMO(Kaiser-Meyer-Oklin)检验Bartlett球形检验

因子分析可以使用psych扩展包中的fa()函数

fa(r, nfactors, n.obs, rotate, scores, fm)

  1. r:相关系数矩阵或者原始数据矩阵;
  2. nfactor:因子数,默认为1;
  3. n.obs:观测数,当r为相关系数矩阵时需手动输入;
  4. rotate:设定因子旋转的方法,默认为promax(斜交旋转);还有 varimax(正交旋转)旋转有助于更好地解释因子结构。
  5. scores:是否计算因子得分,默认为FALSE,且要求r为原始数据矩阵;
  6. fm:因子提取方法,默认为minres,一般选择ml(最大似然法)。

2、分析步骤

下面使用R语言中的内置数据集mtcars做演示:

2.1 准备数据

library(psych)
library(GPArotation) # 支持因子旋转
head(mtcars)
data <- mtcars[,c("mpg", "disp", "hp", "drat", "wt", "qsec")]
head(data)

2.2 检查数据的适用性

检验相关性:如果变量间相关性较低(绝对值<0.3),可能不适合因子分析

cor_data <- cor(data)
cor_data

从下面结果可知,绝大多数的绝对值都大于0.3。 

 KMO检验KMO值>0.6表示数据适合做因子分析。

KMO(data)

从下面结果可知,Overall MSA=0.76>0.6。 

 Bartlett球形检验: p<0.05时适合做因子分析。

cortest.bartlett(cor_data, n = nrow(data)) 

从下面结果可知,p=1.332068e-30 < 0.05。 

 2.3 确定因子数量

特征值(Eigenvalues):碎石图,选择特征值>1的因子

eigen_values <- eigen(cor_data)$values
plot(eigen_values, type = "b", main = "Scree Plot")

从以下结果可知,只能选择2个因子。 

 

 平行分析(Parallel Analysis):

fa.parallel(cor_data, n.obs=nrow(data), fm="ml", fa = "fa", n.iter=100)

从以下碎石图结果可知,建议取2个因子(虚线上面的小三角形个数) 

2.4 进行因子分析

使用正交旋转。

#   数据为相关矩阵 
#   nfactors: 因子数
#   最大迭代次数为100次
#   rotate: 旋转方法("varimax"正交旋转,"oblimin"斜交旋转)
#   fm: 因子提取方法("pa"主成分,"ml"极大似然)
result <- fa(r = cor_data, nfactors = 2, n.obs = nrow(data), n.iter=100, rotate = "varimax", fm = "ml")
result

从以下结果可知,2个因子一共解释了100%的变异。 

使用斜交旋转。

result <- fa(r = cor_data, nfactors = 2, n.obs = nrow(data), n.iter=100, rotate = "promax", fm = "ml")
result

 2.5 可视化结果

# 绘制因子载荷图
fa.diagram(result)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/70249.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pycharm画图程序如何一步一步的调试

1.设置合适的 Matplotlib 后端 在 PyCharm 中&#xff0c;有时需要手动指定 Matplotlib 后端。你可以尝试在脚本的最开始加入以下代码&#xff0c;强制使用 TkAgg 后端&#xff0c;这样可以保证图形更新的实时性&#xff1a; import matplotlib matplotlib.use(TkAgg) # 指定…

基于Java+Swing+Mysql实现旅游管理信息系统

基于JavaSwingMysql实现旅游管理信息系统 一、系统介绍二、功能展示1.登陆2.注册3.旅游信息查询4.查看游行团信息5.报名6、报名信息管理 三、数据库四、其它1.其他系统实现五.获取源码 一、系统介绍 用户&#xff1a;登陆、注册、旅游信息查询、查看游行团信息、报名 管理员&a…

Linux配置端口映射——其他机器可以访问

一般使用虚拟机都是NAT网络模式&#xff0c;但是这种模式的问题是&#xff1a;其他机器不能访问虚拟机 想让其他机器访问这个电脑上的虚拟机&#xff0c;需要做端口映射。 之后就可以使用finalshell连接 注意&#xff1a;如果要连接其他人的虚拟机&#xff0c;需要对方先关闭自…

快速部署deepseek

一、安装ollama 访问https://ollama.com/download 下载并安装对应系统的ollama。 Ollama 是一个开源工具&#xff0c;旨在帮助用户在本地机器上轻松运行和管理大型语言模型&#xff08;LLM&#xff09;。它提供了一个简单易用的命令行界面&#xff0c;可以下载、安装和运行各…

用Deepseek查询快证API-物流查询-实名认证-企业实名认证

快证API可能是一个提供多种验证和查询服务的平台&#xff0c;包括但不限于企业实名认证、短链接生成、手机号归属地查询、IP地址查询等。以下是根据搜索结果整理的关于快证API的相关信息&#xff1a; ‌企业实名认证API‌&#xff1a; 功能&#xff1a;通过与企业相关数据库进行…

基于指纹识别技术的考勤打卡设计与实现(论文+源码)

1 系统总体设计 本次基于指纹识别技术的考勤打卡系统的整体框图如图2.1所示&#xff0c;主控制模块选用单片机STC89C52&#xff0c;同时还包括AT24C02存储电路&#xff0c;指纹模块&#xff0c;LCD12864液晶&#xff0c;继电器&#xff0c;矩阵键盘等硬件电路。其中指纹模块和…

【云安全】云原生-K8S(四)安全问题分析

Kubernetes&#xff08;K8S&#xff09;因其强大的容器编排能力成为了云计算和微服务架构的首选&#xff0c;但同时也带来了复杂的安全挑战。本文将概述K8S的主要安全问题&#xff0c;帮助安全工程师理解潜在威胁&#xff0c;并采取相应的防护措施。 K8S 攻击面概览 下面两张…

基于JAVA毕业生信息招聘信息平台设计与实现

以往的毕业生信息招聘信息管理事务处理主要使用的是传统的人工管理方式&#xff0c;这种管理方式存在着管理效率低、操作流程繁琐、保密性差等缺点&#xff0c;长期的人工管理模式会产生大量的文本文件与文本数据&#xff0c;这对事务的查询、更新以及维护带来不少困难。随着互…

ES6模块化和CommonJs模块化区别

ES6模块化和CommonJs模块化区别 在JavaScript中&#xff0c;模块化是将代码拆分成独立的块&#xff0c;每个块可以独立封装和管理。ES6模块化和CommonJS是两种常见的模块化规范&#xff0c;它们在语法、加载方式和运行时特性上有显著差异。 语法差异 CommonJS模块使用requir…

DeepSeek自动化写作软件

DeepSeek写作软件的三大核心功能 对于内容创作者来说&#xff0c;写作不仅是表达思想的过程&#xff0c;更是一项需要投入大量时间和精力的任务。面对日益增长的内容需求&#xff0c;写作效率低下、内容质量不高等问题&#xff0c;常常让创作者感到焦虑。而 DeepSeek 写作软件…

深入解析 Flutter Bloc:从原理到实战

深入解析 Flutter Bloc&#xff1a;从原理到实战 Bloc&#xff08;Business Logic Component&#xff09;是 Flutter 中一个强大的状态管理工具&#xff0c;基于事件驱动的架构设计&#xff0c;适合管理复杂的业务逻辑和状态。Bloc 的核心理念是将业务逻辑与 UI 分离&#xff…

使用右侧值现象来处理一个word导入登记表的需求

需求也简单&#xff0c;导word文件用户登记表&#xff0c;有各部门的十几个版本&#xff08;为什么这么多&#xff1f;不知道&#xff09;。这里说下谈下我的一些代码做法&#xff1a; 需求分析&#xff1a; 如果能解决java字段和各项填的值怎么配对的问题&#xff0c;那么就…

Day48(补)【AI思考】-设计模式三大类型统一区分与记忆指南

文章目录 设计模式三大类型统一区分与记忆指南**一、创建型模式&#xff08;对象如何生&#xff1f;&#xff09;****二、结构型模式&#xff08;对象如何组&#xff1f;&#xff09;****三、行为型模式&#xff08;对象如何动&#xff1f;&#xff09;****1. 行为型类模式&…

Rook-ceph(1.92最新版)

安装前准备 #确认安装lvm2 yum install lvm2 -y #启用rbd模块 modprobe rbd cat > /etc/rc.sysinit << EOF #!/bin/bash for file in /etc/sysconfig/modules/*.modules do[ -x \$file ] && \$file done EOF cat > /etc/sysconfig/modules/rbd.modules &l…

Transformer技术报告:架构与原理

【深度学习】Transformer 技术报告&#xff1a;架构与原理 一、引言二、Transformer 的基本架构2.1 总体架构2.2 编码器&#xff08;Encoder&#xff09;2.3 解码器&#xff08;Decoder&#xff09;2.4 输入嵌入与位置编码 三、Transformer 的关键特性四、应用场景五、总结 一、…

电子制造企业数字化转型实战:基于Odoo构建MES平台的深度解决方案

作者背景 拥有8年乙方项目经理经验、8年甲方信息化管理经验&#xff0c;主导过12个Odoo制造业项目落地&#xff0c;服务客户涵盖消费电子、汽车电子、工业设备等领域。本文基于华东某电子企业&#xff08;以下简称"A公司"&#xff09;的实战案例&#xff0c;解析行业…

【实战】用飞书多维表格+AI DeepSeeker做股票量价分析

用2万元起步资金&#xff0c;进行A股实战模拟。&#xff08;量化分析无法知晓 消息面的事宜&#xff0c;是一个不足&#xff0c;但是可以代替 哪些一般水平的 股票分析师&#xff09; https://zk4wn8rhv2.feishu.cn/base/OABmbEBa4a4zgOsw5JlcrfIPnzh?tabletblMK2bDhPW5Am9b&a…

计算四个锚点TOA定位中GDOP的详细步骤和MATLAB例程

该MATLAB代码演示了在三维空间中,使用四个锚点的TOA(到达时间)定位技术计算几何精度衰减因子(GDOP)的过程。如需帮助,或有导航、定位滤波相关的代码定制需求,请联系作者 文章目录 DOP计算原理MATLAB例程运行结果示例关键点说明扩展方向另有文章: 多锚点Wi-Fi定位和基站…

Vue 记录用户进入页面的时间、离开页面的时间并计算时长

在 Vue 项目中&#xff0c;要记录用户进入页面的时间、离开页面的时间&#xff0c;并在用户离开时计算时长并调用后端接口&#xff0c;可以借助 Vue 的生命周期钩子和浏览器的一些事件来实现。以下是具体的实现步骤和示例代码&#xff1a; 实现思路 记录进入时间&#xff1a;…

蓝桥杯单片机基础部分——单片机介绍部分

前言 这个部分是额外的&#xff0c;我看我有的学弟学妹基础比较差&#xff0c;对板子上面的模块不太熟悉&#xff0c;这里简单的介绍一下 蓝桥杯单片机 这个就是蓝桥杯单片机的板子&#xff0c;它的主控芯片是&#xff08;IAP15F2K61S2&#xff09;&#xff0c;这里就对他常用…