Transformer技术报告:架构与原理

【深度学习】Transformer 技术报告:架构与原理

    • 一、引言
    • 二、Transformer 的基本架构
      • 2.1 总体架构
      • 2.2 编码器(Encoder)
      • 2.3 解码器(Decoder)
      • 2.4 输入嵌入与位置编码
    • 三、Transformer 的关键特性
    • 四、应用场景
    • 五、总结

一、引言

Transformer 是一种基于注意力机制(Attention Mechanism)的深度学习架构,最初由 Vaswani 等人在 2017 年的论文《Attention Is All You Need》中提出。它彻底改变了自然语言处理(NLP)领域,成为许多语言模型和任务的核心架构。Transformer 的设计理念是摒弃传统的循环神经网络(RNN)及其变体(如 LSTM 和 GRU),转而通过并行计算和注意力机制高效处理序列数据。

二、Transformer 的基本架构

2.1 总体架构

Transformer 采用编码器 - 解码器(Encoder-Decoder)架构,主要用于处理序列到序列的任务,如机器翻译、文本生成等。编码器负责将输入序列编码为上下文表示,解码器则基于这些上下文信息生成输出序列。整个架构由以下部分组成:

编码器(Encoder):由多个相同的层(通常为 6 层)堆叠而成,每层包含两个子层。

解码器(Decoder):同样由多个相同的层堆叠而成,每层包含三个子层。

输入嵌入与位置编码:为输入序列提供初始表示,并保留序列的顺序信息。

输出层:将解码器的输出转换为目标序列。

2.2 编码器(Encoder)

编码器由多个相同的层组成,每层包含两个子层:

多头自注意力层(Multi-Head Self-Attention Layer)

作用:允许模型在处理输入序列时,同时关注序列中的所有位置,捕捉词与词之间的关系。

机制:将输入序列分割成多个 “头”(Head),每个头独立计算注意力权重,然后将所有头的输出拼接起来。这种设计能够捕捉到输入序列中不同子空间的特征。

公式

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V

其中,Q、K、V 分别代表查询(Query)、键(Key)和值(Value), d k d_k dk是键向量的维度。

多头注意力:

MultiHead ( Q , K , V ) = Concat ( head 1 , … , head h ) W O \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O MultiHead(Q,K,V)=Concat(head1,,headh)WO

其中, head i = Attention ( Q W i Q , K W i K , V W i V ) \text{head}_i=\text{Attention}(QW_i^Q,KW_i^K,VW_i^V) headi=Attention(QWiQ,KWiK,VWiV),h 是头的数量。

前馈网络层(Feed Forward Network Layer)

作用:对多头自注意力层的输出进行进一步处理。

结构:一个简单的全连接网络,包含两个线性层和一个非线性激活函数(如 ReLU)。

公式

FFN ( x ) = max ⁡ ( 0 , x W 1 + b 1 ) W 2 + b 2 \text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2 FFN(x)=max(0,xW1+b1)W2+b2

残差连接与层归一化

残差连接:将每个子层的输入直接加到输出上,避免梯度消失问题。

层归一化:对每个子层的输出进行归一化处理,稳定训练过程。

2.3 解码器(Decoder)

解码器同样由多个相同的层组成,每层包含三个子层:

掩码多头自注意力层(Masked Multi-Head Self-Attention Layer)

作用:处理解码器的输入序列,防止解码器在生成过程中看到未来的信息(即 “掩码” 操作)。

机制:与编码器的多头自注意力层类似,但在计算注意力时,对当前词之后的词施加掩码(Mask),使其注意力权重为零。

公式

MaskedAttention ( Q , K , V ) = softmax ( Q K T d k + mask ) V \text{MaskedAttention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}} + \text{mask}\right)V MaskedAttention(Q,K,V)=softmax(dk QKT+mask)V

编码器 - 解码器注意力层(Encoder-Decoder Attention Layer)

作用:将解码器的输入与编码器的输出进行交互,获取上下文信息。

机制:解码器的查询(Query)与编码器的键(Key)和值(Value)进行注意力计算,从而将编码器的上下文信息融入解码器的输出。

前馈网络层

作用:与编码器中的前馈网络类似,进一步处理信息。

解码器的输出经过线性层和 softmax 函数,生成最终的预测结果。

2.4 输入嵌入与位置编码

输入嵌入(Input Embedding)

作用:将输入序列中的每个词转换为固定维度的向量表示。

机制:通过查找表(Lookup Table)将每个词映射到一个预训练的嵌入向量。

位置编码(Positional Encoding)

作用:为模型提供序列中每个词的位置信息,因为 Transformer 不依赖于序列的顺序。

机制:位置编码是一个固定长度的向量,与输入嵌入相加,为模型提供位置信息。

公式

PE ( p o s , 2 i ) = sin ⁡ ( pos 1000 0 2 i / d model ) \text{PE}(pos, 2i) = \sin\left(\frac{\text{pos}}{10000^{2i/d_{\text{model}}}}\right) PE(pos,2i)=sin(100002i/dmodelpos)

PE ( p o s , 2 i + 1 ) = cos ⁡ ( pos 1000 0 2 i / d model ) \text{PE}(pos, 2i+1) = \cos\left(\frac{\text{pos}}{10000^{2i/d_{\text{model}}}}\right) PE(pos,2i+1)=cos(100002i/dmodelpos)

其中,pos 是词的位置,i 是维度, d model d_{\text{model}} dmodel是模型的维度。

三、Transformer 的关键特性

并行化处理:与 RNN 不同,Transformer 可以并行处理整个序列,大大提高了训练效率。

长距离依赖建模:注意力机制允许模型直接捕捉序列中任意两个词之间的关系,解决了 RNN 在长序列中信息丢失的问题。

多头注意力机制:通过多个 “头” 从不同角度捕捉序列特征,增强了模型的表达能力。

残差连接与层归一化:提高了模型的训练稳定性,避免了深层网络中的梯度消失问题。

四、应用场景

Transformer 架构在自然语言处理领域取得了巨大成功,广泛应用于以下任务:

机器翻译:将一种语言的文本翻译成另一种语言。

文本生成:如聊天机器人、写作助手等。

文本分类:对文本进行情感分析、主题分类等。

问答系统:从文本中提取答案或生成回答。

语言模型:如 GPT、BERT 等预训练语言模型,基于 Transformer 架构开发。

五、总结

Transformer 架构凭借其高效的并行计算能力和强大的长距离依赖建模能力,彻底改变了自然语言处理领域。它不仅在学术研究中取得了显著成果,还在工业界得到了广泛应用。未来,Transformer 架构有望在更多领域发挥重要作用,推动人工智能技术的发展。

希望这份报告对你有帮助!如果你有任何问题或需要进一步补充 Transformer 在其他领域的应用实例、技术优化方向等内容,欢迎随时告诉我。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/70234.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电子制造企业数字化转型实战:基于Odoo构建MES平台的深度解决方案

作者背景 拥有8年乙方项目经理经验、8年甲方信息化管理经验,主导过12个Odoo制造业项目落地,服务客户涵盖消费电子、汽车电子、工业设备等领域。本文基于华东某电子企业(以下简称"A公司")的实战案例,解析行业…

【实战】用飞书多维表格+AI DeepSeeker做股票量价分析

用2万元起步资金,进行A股实战模拟。(量化分析无法知晓 消息面的事宜,是一个不足,但是可以代替 哪些一般水平的 股票分析师) https://zk4wn8rhv2.feishu.cn/base/OABmbEBa4a4zgOsw5JlcrfIPnzh?tabletblMK2bDhPW5Am9b&a…

计算四个锚点TOA定位中GDOP的详细步骤和MATLAB例程

该MATLAB代码演示了在三维空间中,使用四个锚点的TOA(到达时间)定位技术计算几何精度衰减因子(GDOP)的过程。如需帮助,或有导航、定位滤波相关的代码定制需求,请联系作者 文章目录 DOP计算原理MATLAB例程运行结果示例关键点说明扩展方向另有文章: 多锚点Wi-Fi定位和基站…

Vue 记录用户进入页面的时间、离开页面的时间并计算时长

在 Vue 项目中,要记录用户进入页面的时间、离开页面的时间,并在用户离开时计算时长并调用后端接口,可以借助 Vue 的生命周期钩子和浏览器的一些事件来实现。以下是具体的实现步骤和示例代码: 实现思路 记录进入时间:…

蓝桥杯单片机基础部分——单片机介绍部分

前言 这个部分是额外的,我看我有的学弟学妹基础比较差,对板子上面的模块不太熟悉,这里简单的介绍一下 蓝桥杯单片机 这个就是蓝桥杯单片机的板子,它的主控芯片是(IAP15F2K61S2),这里就对他常用…

场外个股期权下单后多久成交?场外个股期权对投资组合的影响

对普通老板们而言,它如同精密手术刀——用得好可精准优化投资组合,用不好则可能伤及本金。记住两个关键:一是永远用"亏得起的钱"参与,二是把合约条款当"药品说明书"逐字研读。 场外个股期权下单后多久成交&am…

sqlserver多表查询(内连接,外连接)

1.简单两表查询 2.内连接查询:两张表 3.内连接查询:三张表 4.外连接查询:左外联,右外联同理 5.全外联 6.自连接 一个表中某些数据有关联,相当于把一张表拆成了两张表

SQL Server 运算符优先级

在 SQL Server 中,运算符的优先级决定了在没有使用括号明确指定计算顺序时,运算符的执行顺序。 运算符优先级列表 括号 () 一元运算符 (正号)-(负号)~(按位取反) 乘法、除法和取模…

黑马JS教程笔记(JavaScript教程)——JS基础

黑马pink老师-JavaScript基础语法 黑马程序员前端JavaScript入门到精通全套视频教程,javascript核心进阶ES6语法、API、js高级等基础知识和实战教程 文章目录 ~~黑马pink老师-JavaScript基础语法~~001-计算机编程基础002-计算机编程基础编程语言和标记语言区别 00…

LabVIEW用CANopen的设备属性配置与心跳消息和PDO读取

本示例展示了如何通过SDO(服务数据对象)配置设备属性,以及如何读取从设备周期性发送的心跳消息和PDO(进程数据对象)消息。通过该示例,可以有效地进行设备配置并实现数据监控,适用于CANopen网络中…

北斗导航 | 周跳探测算法(matlab源码)

===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 周跳 1. 高次差法2. 相位减伪距法3. TurboEdit算法(MW+GF组合)4. 多项…

【区块链】深入理解椭圆曲线密码学(ECC)

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 深入理解椭圆曲线密码学(ECC)1. 概述2. 椭圆曲线的数学基础2.1 基本定义2.2 有限…

JavaScript系列(75)--代理模式专题

JavaScript代理模式专题 🎭 JavaScript的Proxy提供了强大的对象代理能力,能够拦截和自定义对象的基本操作。本文将深入探讨Proxy的各种模式、应用场景和最佳实践。 代理基础 🌟 💡 小知识:代理模式允许我们创建一个对…

如何优化Spark作业的性能

优化Spark作业的性能是一个综合性的任务,涉及多个方面的调整和优化。以下是一些关键的优化策略: 一、开发调优 避免创建重复的RDD: 对于同一份数据,只应该创建一个RDD,避免多次创建RDD来增加性能开销。在对不同的数据…

SOCKET建立简单的tcp服务端与客户端通信

socket是什么 socket可以使两台机子建立连接,就像连接风扇与电源的插座一样,socket可以使服务端与客户端建立连接,服务端就像供电厂,而客户端就像用电器,而socket就是连接二者的插座。 建立简单的连接 如果我们想在客…

blender笔记2

一、物体贴地 物体->变换->对齐物体 ->对齐弹窗(对齐模式:反方,相对于:场景原点,对齐:z)。 之后可以设置原点->原点--3d游标 二、面上有阴影 在编辑模式下操作过后,物体面有阴影。 数据-&g…

如何正确安装Stable Diffusion Web UI以及对应的xFormers

本文是我总结的步骤,验证了几次保证是对的。因为正确的安装 Stable Diffusion Web UI 以及对应的 xFormers 实在是太麻烦了,官方和网上的步骤都是残缺和分散的,加上国内网络速度不理想,所以需要一些额外步骤,之前研究出…

hive(hdfs)补数脚本

pb级别迁移通常要持续1个月以上。一般的过程是,全量迁移,追平数据,增量同步,校验,补数。 这里的指定补数脚本: 输入需要补数的表,如Input.txt,如果有分区则加补此分区,没…

Android JNI的理解与使用。

写在前面:Java相对于C/C来说是更高级的语言,隐藏了指针,可读性更高,更容易学习,但是无法直接操作硬件、运行速度较慢也是不可回避的硬伤。JNI就是Java官方定义的一套标准“接口”,用于Java和C/C之间互相调用…

如何在Odoo 18中创建记录规则Rule

如何在Odoo 18中创建记录规则Rule 记录规则是管理访问控制的关键,它能让你依据用户角色,定义谁可以在系统内查看、创建或修改特定记录。例如,公司中的普通员工只能查看或修改与与自己直接相关的数据,而经理则有权限访问和编辑所有…