一.AI大模型开发-初识机器学习

机器学习基本概念

前言

本文主要介绍了深度学习基础,包括机器学习、深度学习的概念,机器学习的两种典型任务分类任务和回归任务,机器学习中的基础名词解释以及模型训练的基本流程等。

一.认识机器学习

1.人工智能和机器学习

人工智能(Artificial Intelligence,简称AI) 是指由计算机系统所表现出的智能行为。它是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的学科。人工智能的目标是使机器能够执行通常需要人类智能才能完成的任务,如学习、推理、解决问题、理解语言、识别图像等

人工智能的关键技术包括:

  • 机器学习(Machine Learning, ML):通过数据训练模型,使计算机能够从经验中学习并改进性能。
  • 深度学习(Deep Learning):一种特殊的机器学习方法,使用多层神经网络来处理复杂的数据模式。
  • 自然语言处理(Natural Language Processing, NLP):使计算机能够理解和生成人类语言。
  • 计算机视觉(Computer Vision*:让计算机能够“看”和解释图像或视频内容。
  • 强化学习(Reinforcement Learning):通过奖励和惩罚机制来训练AI系统做出最优决策。

机器学习是一种通过大量数据去迭代逼近未知参数的最优解的方法。 深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络。

在这里插入图片描述

人工智能已经广泛应用于多个行业,如医疗、金融、交通、娱乐、教育等。常见的应用场景包括自动驾驶汽车、智能客服、个性化推荐、疾病诊断、语音助手等。

2.机器如何学习

机器学习是对人脑学习的模拟,人类通过学习在大脑中形成对事物的认知,也就是知识,当大脑接受到新的问题时能够根据自身的认知和经验给出答案。那么机器也是一样,我们对AI提供大量的数据进行学习和反复训练那么AI也能够形成一套“知识”体系。当输入新的数据给AI那么它就能根据自己的“知识”体系给出较为精准的结果,如下:

在这里插入图片描述

3.什么是神经网络

深度学习和机器学习最大的区别是深度学习引入了神经网络,神经网络的构建是通过模拟人类神经元之间的信息传递过程。

人体大脑学习过程是通过感觉器官接收外界刺激信息,如视觉、听觉、触觉等,这些信息转化为神经信号传递到大脑,神经信号在神经元之间通过突触进行传导。 神经元是主要由树突、轴突、突出组成,树突是从上面接收很多信号,经过轴突处理后传递给突触,突触会进行选择性向下一级的树突传递信号。

通过这种方式,神经元之间形成了复杂的连接网络,使得大脑能够进行信息的传递、整合和处理,以实现各种认知、情感和行为功能。此外,突触在学习、记忆等过程中还可以发生动态的变化和重塑,以适应新的经验和环境需求。
在这里插入图片描述

那么神经网络模拟的就是神经元之间的信息传递过程,每个神经网络单元抽象出来一种=数学MP模型,也叫感知器,它接收多个输入(x1,x2,x3…),产生一个输出 即 y= W1X1+W2X2+W3X3+…+WnXn + b。

这就好比是神经末梢感受各种外部环境的变化(感知外部刺激),产生不同的电信号(也就是输入:x1,x2,x3…xn),这些强度不同(也就是参数w1,w2,w3…wn)的电信号汇聚到一起,会改变这些神经元内的电位,如果神经元的电位超过了一个“阈值”(参数 b),它就会被激活(激活函数),即“兴奋”起来,向其他神经元发送化学物质。

下面是MP模型示例图,它是麦卡洛克一皮茨模型(McCulloch-Pitts model )简称,一种早期的神经元网络模型.
在这里插入图片描述
MP模型由美国神经生理学家麦卡洛克(McCulloch, W.)和数学家皮茨 <Pitts,W.)于1943年共同提出。设有n个神经元相互连结,每个神经元的状态Si (i=1,2,…,n)取值0或1,分别表示该神经元的抑制和兴奋,每个神经元的状态都受其他神经元的制约,B是第i个神经元的阂值,W是神经元i与神经元j之间的连结强度。

MP模型过程:

  1. 每个神经元都是一个多输入端如x1,x2,x3
  2. 每个输入都会乘以权重w1,w2,w3,再加一个阈值 b
  3. 最后我们会得到 y = w1x1 + w2x2 + w3x3 + b,最终我们得到一个值 y
  4. 得到这个值后是否会向下游输出则取决于激活函数f(x)
  5. 向下游输出的结果Oj的值要么是0,要么是1。

激活函数

激活函数:就是在人工神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。

如果不用激活函数:每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,这种情况就是最原始的感知机(Perceptron)。 如果使用激活函数:激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。

单个的感知器(也叫单感知机)就构成了一个简单的模型(MP模型),但在现实世界中,实际的决策模型则要复杂得多,往往是由多个感知器组成的多层网络,如下图所示,这也是经典的神经网络模型(也叫多感知机),由输入层、隐含层、输出层构成。

4.机器学习的两种任务

机器学习的典型任务可以分为:分类任务 和 回归任务,分类任务:找到分类边界,将不同类型的数据划分开。回归任务:通过模型拟合数据点分布,预测新数据的值。分类任务输出离散值,回归任务输出连续值。

分类任务: 是根据每个样本的值特征预测该样本属于类型A、类型B还是类型C,例如情感分类、内容审核,相当于学习了一个分类边界(决策边界),用分类边界把不同类别的数据区分开来。

回归任务:是对连续值进行预测,根据每个样本的值特征预测该样本的具体数值,例如房价预测,股票预测等,相当于学习到了这一组数据背后的分布,能够根据数据的输入预测该数据的取值。

在这里插入图片描述
分类模型只能输出对与错,通常用来将预测结果是将样本划分到某个特定类别,而回归模型输出的数据的预测值,例如,判断一个水果是苹果还是橙子用分类模型,而预测明天的气温是多少度则用回归模型。

5.有监督学习和无监督学习

为什么要分有监督和无监督:当训练员训练小狗的时候,如果小狗做出了一个正确的动作,都会奖励一个实物给小狗来标记一个正确的信号,模型训练也是如此:我们需要通过真实数据去标注模型的预测值是否正确,或者误差值是多少,这个就是有监督学习,有监督和无监督区别如下:

有监督学习:监督学习利用大量的标注数据来训练模型,对模型的预测值和数据的真实标签计算损失,然后将误差进行反向传播(计算梯度、更新参数),通过不断的学习,最终可以获得识别新样本的能力。

每条数据都有正确答案,通过模型预结果与正确答案的误差不断优化模型参数

无监督学习:无监督学习不依赖任何标签值,通过对数据内在特征的挖掘,找到样本间的关系,比如聚类相关的任务。有监督和无监督最主要的区别在于模型在训练时是否需要人工标注的标签信息。

只有数据没有答案,常见的是聚类算法,通过衡量样本之间的距离来划分类別

6.什么是模型

模型可以通过对海量数据的学习,吸收数据里面的“知识”。然后,再对知识进行运用,例如回答问题、创造内容等,所谓模型,就是一个包含了大量未知参数的函数,给函数输入数据生成输出,所谓训练,就是通过大量的数据去迭代逼近这些未知参数的最优解。

为什么要训练模型?如果我们对模型提供不同领域的数据进行训练那么他们能够预测的数据范围也就不一样。比如:我们使用法律相关的数据进行训练,那么当你在询问它法律的问题时他就能给出较为精准的答案,当你问他医疗的问题它肯定就无法给出你想要的答案了。

就好比一只小狗你训练它跳火圈,那么它就只会跳火圈,你训练它学猫叫他它就会学猫叫,AI也是一样,这样就形成了一个一个的“模型”,有些模型的能力是绘图,有些模型的能力是对话,就看你怎么训练它。

如果你们公司希望大模型能够针对于你们自己的业务和数据做出精准的预测值,那么就需要通过你们公司自己的大量数据去训练,这也就是为什么企业都需要自己去部署和训练模型,因为市面上的模型不一定适用于你们公司的业务。

大模型(Large Model) 是指参数量非常庞大、规模远超传统模型的人工智能模型。这类模型通常具有数以亿计甚至数以万亿计的参数,能够在多种任务上表现出卓越的性能和通用性。大模型通过大量的数据训练,能够捕捉到复杂的数据模式和语义信息,从而在自然语言处理、计算机视觉、语音识别等领域展现出强大的能力。

我们现在口头上常说的大模型,实际上特指大模型的其中一类,也是用得最多的一类——语言大模型(Large Language Model,也叫大语言模型,简称LLM)。
除了语言大模型之外,还有视觉大模型、多模态大模型等。现在,包括所有类别在内的大模型合集,被称为广义的大模型。而语言大模型,被称为狭义的大模型

7.大模型训练流程

如果想要大模型如同人脑一样给出精准结果,那么需要提供大量数据进行“投喂”(学习),并且需要“标记”模型给出的答案是否“正确”,我们把学习的过程,我们称之为训练,运用的过程,则称之为推理。比如:我给大模型投喂的数据是"1+1=?" , 然后给出正确值为 2,那么大模型就学习到1+1=2,那么当你对他提出问题“1+1=?”,那么它可能就会给出推理的值2,下面是大模型学习和训练的过程:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/70192.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

cornerstone3D学习笔记-MPR

最近在研究如何利用cornerstone3D (v1.70.13) 来实现MPR功能&#xff0c;找到它的一个demo -- volumeBasic, 运行效果如下图 看了下主程序的示例代码&#xff0c;非常简单&#xff0c;可以说corestone3D这个库把很多细节都封装起来了&#xff0c;使得调用者可以很简单的快速实…

使用 Go-DeepSeek 轻松调用 DeepSeek 模型:从在线 API 到本地部署

引言 DeepSeek 是一个强大的 AI 模型平台&#xff0c;支持多种自然语言处理任务&#xff0c;如对话生成、代码补全和函数调用。为了方便 Go 开发者快速集成 DeepSeek 的功能&#xff0c;我开发了一个非官方的 Go 客户端库&#xff1a;go-deepseek。本文将详细介绍如何使用该库…

VSCode 实用快捷键

前文 VSCode 作为文本编辑神器, 熟练使用其快捷键更是效率翻倍, 本文介绍 VSCode 常用的实用的快捷键 实用快捷键 涉及到文本操作, 搜索定位, 多光标, 面板打开等快捷键 功能快捷键复制光标当前行 (不需要鼠标选中) Ctrl C 剪切光标当前行 (不需要鼠标选中) Ctrl X 当前行下…

28、深度学习-自学之路-NLP自然语言处理-做一个完形填空,让机器学习更多的内容程序展示

import sys,random,math from collections import Counter import numpy as npnp.random.seed(1) random.seed(1) f open(reviews.txt) raw_reviews f.readlines() f.close()tokens list(map(lambda x:(x.split(" ")),raw_reviews))#wordcnt Counter() 这行代码的…

用deepseek学大模型08-卷积神经网络(CNN)

yuanbao.tencent.com 从入门到精通卷积神经网络(CNN),着重介绍的目标函数&#xff0c;损失函数&#xff0c;梯度下降 标量和矩阵形式的数学推导&#xff0c;pytorch真实能跑的代码案例以及模型,数据&#xff0c;预测结果的可视化展示&#xff0c; 模型应用场景和优缺点&#xf…

【Rust中级教程】1.10. 引用及内部可变性(简单回顾):引用、内部可变性、`Cell`类型及相关操作

喜欢的话别忘了点赞、收藏加关注哦&#xff08;加关注即可阅读全文&#xff09;&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 这篇文章只对所有权进行简单回顾&#xff0c;想要看完整的所有权系统阐述见【Rust自学】专栏…

2012年下半年软件设计师上午题知识点及其详细解释(附真题及答案解析)

以下是2012年下半年软件设计师上午题的所有题目&#xff08;从第1题到第75题&#xff09;的总结&#xff0c;按顺序列出每道题目的考察知识点及其详细解释&#xff0c;供考生背诵记忆&#xff1a; 1. 控制器 知识点&#xff1a;CPU的组成与功能解释&#xff1a;控制器负责指令…

openGauss 6.0.0 RC1数据库日常运维

引言 随着数字化时代的快速发展&#xff0c;数据库作为企业信息化的核心&#xff0c;其稳定性和性能对于企业至关重要。openGauss 6.0.0 openGauss是一款开源关系型数据库管理系统&#xff0c;采用木兰宽松许可证v2发行。openGauss内核深度融合华为在数据库领域多年的经验&…

4090单卡挑战DeepSeek r1 671b:尝试量化后的心得的分享

引言&#xff1a; 最近&#xff0c;DeepSeek-R1在完全开源的背景下&#xff0c;与OpenAI的O1推理模型展开了激烈竞争&#xff0c;引发了广泛关注。为了让更多本地用户能够运行DeepSeek&#xff0c;我们成功将R1 671B参数模型从720GB压缩至131GB&#xff0c;减少了80%&#xff…

【Scrapy】Scrapy教程6——提取数据

前一小节我们拿到了页面的数据,那页面中那么多内容,我们想要其中的部分内容,该如何获取呢?这就需要对我们下载到的数据进行解析,提取出来想要的数据,这节就讲讲如何提取数据。 引入 我们编辑保存下来的shouye.html文件看下,发现这是什么鬼,全是如下图的代码。 没错…

Python 的 with 语句可以用来管理资源的自动清理,并替代 try...finally 语句,使代码更简洁易读

Python 的 with 语句可以用来管理资源的自动清理&#xff0c;并替代 try...finally 语句&#xff0c;使代码更简洁易读。 1. with 语句的作用 在 Python 里&#xff0c;with 语句通常用于管理资源&#xff0c;比如文件、数据库连接、网络请求等。 它可以保证无论代码是否执行…

栈回溯基础

指令集区分 thumb指令集 长度&#xff1a;thumb指令通常是 16 位。特点&#xff1a;thumb 指令集是为了压缩指令集长度减少程序占用空间。对齐方式&#xff1a;2字节对齐&#xff0c;存放 thumb 指令的地址一般会被1&#xff0c;设置为奇数&#xff0c;用于表示地址上存放的是…

Pytorch论文实现之GAN-C约束鉴别器训练自己的数据集

简介 简介:这次介绍复现的论文主要是约束判别器的函数空间,作者认为原来的损失函数在优化判别器关于真样本和假样本的相对输出缺乏显式约束,因为在实践中,在优化生成器时,鉴别器对生成样本的输出会增加,但对真实数据保持不变,而优化鉴别器会导致其对真实数据的输出增加…

Pyecharts系列课程06——热力图(Heatmap)

1. 基础使用 热力图是一种用于展示数据分布的密度或热度的图表,通过颜色深浅来表示数值大小。 a. 简单示例 我们先来看一个简单示例: 简单示例 from pyecharts.charts import HeatMapx_data = ["分类1", "分类2", "分类3"] y_data

交换路由——控制VLAN之间通信

项目 最近一段时间,A公司发现划分VLAN之后,网速提高很多,发生拥堵的情况消失了.但是,部门之间不能互联,也给办公室带来不便.公司要求项目实施各VLAN内主机互通。 部门 VLAN 名称 端口范围 网络ID 计算机 市场部 VLAN 10 shichang f0/1-f/010 192.168.10.0/24 pc0,pc…

使用 Redis 实现 RBAC 权限管理

1. 什么是 RBAC&#xff1f; RBAC&#xff08;Role-Based Access Control&#xff0c;基于角色的访问控制&#xff09;是一种常见的权限管理模型&#xff0c;它通过用户&#xff08;User&#xff09;、角色&#xff08;Role&#xff09;、权限&#xff08;Permission&#xff…

qt-C++笔记之QGraphicsScene和 QGraphicsView中setScene、通过scene得到view、通过view得scene

qt-C++笔记之QGraphicsScene和 QGraphicsView中setScene、通过scene得到view、通过view得scene code review! 文章目录 qt-C++笔记之QGraphicsScene和 QGraphicsView中setScene、通过scene得到view、通过view得scene1.`setScene` 方法2.通过 `scene` 获取它的视图 (`views()`)…

DeepSeek频繁宕机应对方案

第三方监测显示&#xff0c;38%的企业因AI工具不稳定错失热点流量&#xff08;Gartner 2025&#xff09;。当竞品1小时内发布300篇行业内容时&#xff0c;你可能还在为「服务器繁忙」提示焦头烂额。147SEO系统通过智能容错机制&#xff0c;帮助某本地生活平台稳定输出580篇地域…

CentOS/RHEL如何更换国内Yum源

在国内使用CentOS或RHEL系统时&#xff0c;默认的Yum源是国外的&#xff0c;这可能导致软件包的下载速度慢&#xff0c;甚至出现连接超时的问题。为了解决这个问题&#xff0c;我们可以将Yum源切换到国内的镜像源&#xff0c;从而大大提高软件包的下载速度和稳定性。 本文将详…

cs224w课程学习笔记-第2课

cs224w课程学习笔记-第2课 传统图学习 前言一、节点任务1、任务背景2、特征节点度3、特征节点中心性3.1 特征向量中心性&#xff08;Eigenvector Centrality&#xff09;3.2 中介中心性&#xff08;Betweenness Centrality&#xff09;3.3 接近中心性&#xff08;Closeness Cen…