神经网络|(九)概率论基础知识-泊松分布及python仿真

【1】引言

在前序学习进程中,我们已经知晓二项分布是多重伯努利分布,二伯努利分布对应的是可以无限重复、结果只有两种可能的随机试验。

相关文章链接为:

神经网络|(八)概率论基础知识-二项分布及python仿真-CSDN博客

上述文章还调用numpy模块中的numpy.random.binomial()函数,实现了对多重伯努利试验概率分布即二项分布的数学仿真。 

【2】泊松分布

实际上,泊松分布是二项分布的一种近似

当二项分布的n很大而p很小时,就会有泊松分布:

P\left \{ X=k \right \}=\frac{\lambda ^{k}e^{-k}}{k!},k=0,1,2...

上式的证明过程暂略。

泊松分布只有一个参数拉姆达λ。

【3】代码测试

使用python调用numpy模块下的np.random.poisson()函数可以实现按照泊松分布生成随机数。

点击下方链接,直达np.random.poisson()函数的官网教程:

numpy.random.poisson — NumPy v2.2 Manual

官网页面的函数解释为:

图1  np.random.poisson()函数官网说明

首先进行必要模块的引入:

import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块

然后定义泊松分布的参数,参数包括拉姆达λ和size:

# 定义泊松分布的参数 λ,它代表单位时间(或空间)内事件的平均发生次数
lambda_value = 4
# 生成的随机样本数量
sample_size = 1000

 官网对参数拉姆达λ和size的解释为:

图2  np.random.poisson()函数官网参数说明 

拉姆达λ是n和p的乘积,必须是正数,实际上为0也不太可能;

size代表随机数的数量,可以是矩阵的各种维度形式,也可以就是一个单独的数字。

可以这样理解,random.poisson(lam, size)代表生成size个随机数,这些随机数服从泊松分布,泊松分布的参数为拉姆达λ。

在理解上述参数意义后,直接生成服从泊松分布的随机数:

# 使用 numpy 生成服从泊松分布的随机数
samples = np.random.poisson(lam=lambda_value, size=sample_size) #生成满足泊松分布的随机数

之后的事情比较简单,把这些数据分布规律,再重新画出来即可:

# 统计每个事件发生次数的频数
counts = np.bincount(samples)
# 计算每个事件发生次数对应的概率
probabilities = counts / sample_size# 创建一个表示事件发生次数的数组
event_numbers = np.arange(len(counts))# 绘制柱状图来展示仿真得到的泊松分布
plt.bar(event_numbers, probabilities, width=0.8, color='skyblue', edgecolor='green')# 设置图表的标题和坐标轴标签
plt.title(f'Poisson Distribution Simulation (λ = {lambda_value})')
plt.xlabel('Number of Events')
plt.ylabel('Probability')

这段代码的原理是:由于已经按照泊松分布生成了随机数,所以这些随机数的分布规律必然和泊松分布的函数曲线相似,把这个规律画出来即可。

上述代码运行后,生成的图像为:

图3 泊松分布仿真效果

此时的完整代码为:

import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块# 定义泊松分布的参数 λ,它代表单位时间(或空间)内事件的平均发生次数
lambda_value = 4
# 生成的随机样本数量
sample_size = 1000# 使用 numpy 生成服从泊松分布的随机数
samples = np.random.poisson(lam=lambda_value, size=sample_size) #生成满足泊松分布的随机数# 统计每个事件发生次数的频数
counts = np.bincount(samples)
# 计算每个事件发生次数对应的概率
probabilities = counts / sample_size# 创建一个表示事件发生次数的数组
event_numbers = np.arange(len(counts))# 绘制柱状图来展示仿真得到的泊松分布
plt.bar(event_numbers, probabilities, width=0.8, color='skyblue', edgecolor='green')# 设置图表的标题和坐标轴标签
plt.title(f'Poisson Distribution Simulation (λ = {lambda_value})')
plt.xlabel('Number of Events')
plt.ylabel('Probability')# 显示绘制好的图表
plt.show()

【4】细节说明

代码使用函数np.random.poisson()生成满足泊松分布的随机数,本身未编写泊松分布函数。

【5】总结

回顾了泊松分布的基础知识,使用python语言调用numpy模块中的numpy.random.poisson()函数进行了泊松分布效果仿真。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69553.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用 OpenGL ES 渲染一个四边形

使用 OpenGL ES 渲染一个四边形 在 iOS 开发中,OpenGL ES 是一个强大的工具,用于实现高性能的 2D 和 3D 图形渲染。本文将通过一个完整的代码示例,详细解析如何使用 OpenGL ES 渲染一个简单的四边形。我们将从基础概念入手,逐步讲解代码的每个部分,帮助你理解 OpenGL ES …

《从0到1CTFer成长之路》逆向工程个人笔记--静态分析

上一篇文章:《从0到1CTFer成长之路》逆向工程个人笔记--逆向工程基础 IDA 使用入门 加载文件 打开 IDA,点击 GO,即可把程序拖拽到 IDA 中 IDA 分为 32bit 和 64bit 两种架构,选择哪种结构,可以在把程序拖拽到 IDA 后…

【机器学习】训练(Training)、验证(Validation)和测试(Testing)

机器学习中训练(Training)、验证(Validation)和测试(Testing)这三个阶段的作用和关系。 1. 训练阶段 (Training) - 使用训练集数据来训练模型 - 模型通过学习训练数据的特征和模式来调整其内部参数 - 这个阶段模型会不断优化以减少预测误差 - 通常使用最大的数据集比例&…

解锁 DeepSeek 模型高效部署密码:蓝耘平台深度剖析与实战应用

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…

SQL自学,mysql从入门到精通 --- 第 15天,数据导入、导出

数据的导入、导出 -- 查看当前设置的目录路径,限制从数据库服务器读取和写入文件的操作只能在指定的目录中进行,在安全性和文件操作限制方面具有重要意义。root@mysqldb 14:19: [(none)]> SHOW VARIABLES LIKE "secure_file_priv"; +------------------+------…

IDEA升级出现问题Failed to prepare an update Temp directory inside installation

IDEA升级出现问题"Failed to prepare an update Temp directory inside installation…" 问题来源: 之前修改了IDEA的默认配置文件路径,然后升级新版本时就无法升级,提示"Failed to prepare an update Temp directory insid…

Faiss特征向量搜索

ubuntu 24.10系统上实现 安装OpenBLAS git clone https://github.com/xianyi/OpenBLAS.git 安装gfortran进行编译 sudo apt install gfortran cd OpenBLAS make FCgfortran make install ln -s /opt/OpenBLAS/lib/libopenblas.so /usr/lib/libopenblas.so LD_LIBRARY_PATH/…

查询已经运行的 Docker 容器启动命令

一、导语 使用 get_command_4_run_container 查询 docker 容器的启动命令 获取镜像 docker pull cucker/get_command_4_run_container 查看容器命令 docker run --rm -v /var/run/docker.sock:/var/run/docker.sock cucker/get_command_4_run_container 容器id或容器名 …

【C++高并发服务器WebServer】-14:Select详解及实现

本文目录 一、BIO模型二、非阻塞NIO忙轮询三、IO多路复用四、Select()多路复用实现 明确一下IO多路复用的概念:IO多路复用能够使得程序同时监听多个文件描述符(文件描述符fd对应的是内核读写缓冲区),能够提升程序的性能。 Linux下…

活动预告 |【Part1】Microsoft 安全在线技术公开课:安全性、合规性和身份基础知识

课程介绍 通过参加“Microsoft 安全在线技术公开课:安全性、合规性和身份基础知识”活动提升你的技能。在本次免费的介绍性活动中,你将获得所需的安全技能和培训,以创造影响力并利用机会推动职业发展。你将了解安全性、合规性和身份的基础知识…

Dubbo 3.x源码(29)—Dubbo Consumer服务调用源码(1)服务调用入口

基于Dubbo 3.1,详细介绍了Dubbo Consumer服务调用源码。 此前我们学习了Dubbo服务的导出和引入的源码,现在我们来学习Dubbo服务调用的源码。 此前的文章中我们讲过了最上层代理的调用逻辑(服务引用bean的获取以及懒加载原理):业务引入的接口…

java-初识List

List: List 是一个接口,属于 java.util 包,用于表示有序的元素集合。List 允许存储重复元素,并且可以通过索引访问元素。它是 Java 集合框架(Java Collections Framework)的一部分 特点: 有序…

01-SDRAM控制器的设计——案例总概述

本教程重点▷▷▷ 存储器简介。 介绍 SDRAM 的工作原理。 详细讲解SDRAM 控制的Verilog 实现方法。 PLL IP和FIFO IP 的调用,计数器设计,按键边沿捕获,数码管控制。 完成SDRAM控制器应用的完整案例。 Signal Tap 调试方法。 准备工作▷…

idea 找不到或者无法加载主类

idea项目,之前一直是正常运行的,放假了之后再回来就遇到启动不了的问题。 WebApplication这个类右键运行的时候,也提示找不到主类。 对于这种之前运行没有问题,突然出问题的项目。 我的点是没有改动代码和数据的情况下项目就跑不起…

鸿蒙harmony 手势密码

1.效果图 2.设置手势页面代码 /*** 手势密码设置页面*/ Entry Component struct SettingGesturePage {/*** PatternLock组件控制器*/private patternLockController: PatternLockController new PatternLockController()/*** 用来保存提示文本信息*/State message: string …

Python中3个与众不同的运算符 :=海象 ->箭头 //地板除法运算符

在python中,有一些和其他编程语言不太一样的运算符,今天就给大家介绍几种Python中的3个与众不同的运算符 :海象 ->箭头 // 地板除法运算符。 1. 海象运算符 : 这个运算符用来分配值并同时返回变量,英文 walrus (a : 5) print(a…

2025.1.8(qt图形化界面之消息框)

笔记(后期复习补充) 作业 1> 手动将登录项目实现,不要使用拖拽编程 并且,当点击登录按钮时,后台会判断账号和密码是否相等,如果相等给出登录成功的提示,并且关闭当前界面,发射一…

实践深度学习:构建一个简单的图像分类器

引言 深度学习在图像识别领域取得了巨大的成功。本文将指导你如何使用深度学习框架来构建一个简单的图像分类器,我们将以Python和TensorFlow为例,展示从数据准备到模型训练的完整流程。 环境准备 在开始之前,请确保你的环境中安装了以下工…

json转excel,在excel内导入json, json-to-excel插件

简介 JSON 转 Excel 是一款 Microsoft Excel 插件,可将 JSON 数据转换为 Excel 表格。 要求 此插件适用于以下环境:Excel 2013 Service Pack 1 或更高版本、Excel 2016 for Mac、Excel 2016 或更高版本、Excel Online。 快速开始 本快速开始指南适用…

腾讯云AI代码助手评测:如何智能高效完成Go语言Web项目开发

腾讯云AI代码助手评测:如何智能高效完成Go语言Web项目开发 ?? 文章目录 腾讯云AI代码助手评测:如何智能高效完成Go语言Web项目开发 ?? 背景引言开发环境介绍腾讯云AI代码助手使用实例 1. 代码补全2. 技术对话3. 代码优化4. 规范代码5. Bug处理 获得…