Ollama教程:轻松上手本地大语言模型部署

Ollama教程:轻松上手本地大语言模型部署

在大语言模型(LLM)飞速发展的今天,越来越多的开发者希望能够在本地部署和使用这些模型,以便更好地控制数据隐私和计算资源。Ollama作为一个开源工具,旨在简化大语言模型的本地部署和管理。本文将详细介绍Ollama的安装、使用以及一些高级功能,帮助你快速上手并掌握Ollama的使用方法。

一、Ollama简介

Ollama是一个开源的大语言模型部署服务工具,支持多种模型格式,并提供简单的命令行接口。它允许用户在本地运行和管理大语言模型,而无需依赖于云服务或强大的GPU资源。Ollama支持多种操作系统,包括Linux、macOS和Windows。

二、安装Ollama

1. 下载安装文件

访问Ollama的官方网站,根据你的操作系统下载对应的安装包。Windows用户可以直接下载安装程序,而Linux用户可以通过以下命令进行安装:

curl -fsSL https://ollama.com/install.sh | sh

2. 验证安装

安装完成后,打开终端或命令行工具,输入以下命令验证安装是否成功:

ollama --version

如果显示版本号,说明安装成功。

三、使用Ollama

1. 运行模型

Ollama提供了一个丰富的模型库,包括Llama 2等热门模型。要运行一个模型,可以使用以下命令:

ollama run llama2

运行后,你将进入交互式命令行界面,可以直接与模型对话。

2. 查询已下载的模型

使用以下命令可以查看已下载的模型:

ollama list

3. 查询模型信息

如果你想查看某个模型的详细信息,可以使用以下命令:

ollama show <model-name>

4. 删除模型

如果不再需要某个模型,可以使用以下命令删除:

ollama delete <model-name>

四、高级功能

1. 自定义模型

Ollama支持从多种格式导入模型,包括GGUF和Safetensors。例如,从GGUF文件导入模型的步骤如下:

创建一个名为Modelfile的文件,指定要导入的模型的本地文件路径:

FROM ./vicuna-33b.Q4_0.gguf

创建并运行模型:

ollama create example -f Modelfile
ollama run example

2. 使用API调用

Ollama提供了简单的HTTP API,方便开发者通过代码调用模型。以下是一个Python示例:

import requestsurl = "http://localhost:11434/api/generate"
data = {"model": "llama2","prompt": "你好,Ollama!"
}response = requests.post(url, json=data)
for line in response.iter_lines():if line:print(line.decode('utf-8'))

3. 部署可视化界面

Ollama支持通过WebUI部署可视化对话界面。你可以使用Docker来部署OpenWebUI,或者使用FastAPI等框架来构建自己的可视化界面。

五、总结

Ollama提供了一个强大而灵活的平台,允许开发者在本地环境中轻松地部署和运行大型语言模型。无论你是希望快速体验这些模型的能力,还是需要深度定制和开发,Ollama都能满足你的需求。通过本文的介绍,你应该已经对如何使用Ollama有了较为全面的了解,可以开始你的探索和开发之旅了。

如果你在使用过程中遇到任何问题,可以参考Ollama的官方文档,或者在社区中寻求帮助。希望Ollama能成为你在大语言模型领域的得力助手!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69159.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Elasticsearch】date range聚合

好的&#xff0c;继续之前的示例&#xff1a; json ] } } } } 4.3 自定义键&#xff08;key&#xff09; 通过为每个范围指定一个唯一的键&#xff08;key&#xff09;&#xff0c;可以在结果中更方便地引用每个范围。这在使用keyed参数将结果以键值对形式返回时尤其有用。 j…

ElasticSearch 学习课程入门(二)

引子 前文已经介绍了ES的增删改查基本操作&#xff0c;接下来&#xff0c;我们学习下高级点的用法。OK&#xff0c;那就让我们开始吧。 一、ES高级操作 1、条件查询 &#xff08;1&#xff09;GET https://127.0.0.1:9200/shopping/_search?qcategory:小米 &#xff08;2&…

中国通信企业协会 通信网络安全服务能力评定 风险评估二级要求准则

通信网络安全服务能力评定要求是对通信网络安全服务单位的资格状况、经济实力、技术能力、服务队伍、服务过程能力等方面的具体衡量和评价。中国通信企业协会通信网络安全服务能力评定风险评估二级应达到风险评估服务一级能力要求的所有条款&#xff0c;并在以下方面增强或增加…

php反序列化含CTF实战

php反序列化 声明&#xff1a;本人只是在学习反序列化 因此这篇文章大量参考了https://blog.csdn.net/Hardworking666/article/details/122373938 这位的博客 感谢他的详细文章让我可以详细学习反序列化 大家想看更详细的可以直接参考他的文章!!! 什么是序列化和反序列化 序…

6.PPT:魏女士-高新技术企业政策【19】

目录 NO1234​ NO567 ​ NO1234 创建“PPT.pptx”考生文件夹Word素材文档&#xff1a;选中对应颜色的文字→选中对应的样式单击右键按下匹配对应文字&#xff1a;应用所有对应颜色的文字开始→创建新的幻灯片→从大纲&#xff1a;考生文件夹&#xff1a;Word素材重置 开始→版…

【Linux系统】信号:信号保存 / 信号处理、内核态 / 用户态、操作系统运行原理(中断)

理解Linux系统内进程信号的整个流程可分为&#xff1a; 信号产生 信号保存 信号处理 上篇文章重点讲解了 信号的产生&#xff0c;本文会讲解信号的保存和信号处理相关的概念和操作&#xff1a; 两种信号默认处理 1、信号处理之忽略 ::signal(2, SIG_IGN); // ignore: 忽略#…

学习日记250205

一.论文 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 二、计划&#xff1a; 理一下微调相关的文章 三. &#xff09;——&#xff08; 明天认真学习了&#xff0c;不能再打这么久的星露谷了&#xff01;&#xff01;&#xff0…

【算法篇】贪心算法

目录 贪心算法 贪心算法实际应用 一&#xff0c;零钱找回问题 二&#xff0c;活动选择问题 三&#xff0c;分数背包问题 将数组和减半的最小操作次数 最大数 贪心算法 贪心算法&#xff0c;是一种在每一步选择中都采取当前状态下的最优策略&#xff0c;期望得到全局最优…

SSM网上球鞋竞拍系统

&#x1f345;点赞收藏关注 → 添加文档最下方联系方式咨询本源代码、数据库&#x1f345; 本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目希望你能有所收获&#xff0c;少走一些弯路。&#x1f345;关注我不迷路&#x1f345; 项目视频 js…

基于springboot河南省旅游管理系统

基于Spring Boot的河南省旅游管理系统是一种专为河南省旅游行业设计的信息管理系统&#xff0c;旨在整合和管理河南省的旅游资源信息&#xff0c;为游客提供准确、全面的旅游攻略和服务。以下是对该系统的详细介绍&#xff1a; 一、系统背景与意义 河南省作为中国的中部省份&…

探索 paraphrase-MiniLM-L6-v2 模型在自然语言处理中的应用

在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;将文本数据转换为机器学习模型可以处理的格式是至关重要的。近年来&#xff0c;sentence-transformers 库因其在文本嵌入方面的卓越表现而受到广泛关注。本文将深入探讨 paraphrase-MiniLM-L6-v2 模型&#xff0c;这…

人工智能|本地部署|ollama+chatbox快速Windows10下部署(初级篇)

一、 前言&#xff1a; 其实早一个月我已经使用过deepseek&#xff0c;并且也在自己的机器上通过ollama部署过&#xff0c;但一直没有太多动力&#xff0c;现在感觉还是的记录一下&#xff0c;省的自己给忘掉了 本文只是简单记录一下ollamaopen-webuichatbox部署通过网盘分享…

ZZNUOJ(C/C++)基础练习1061——1070(详解版)

目录 1061 : 顺序输出各位数字 C语言版 C版 1062 : 最大公约数 C C 1063 : 最大公约与最小公倍 C C 1064 : 加密字符 C C 1065 : 统计数字字符的个数 C C 1066 : 字符分类统计 C C 1067 : 有问题的里程表 C C 1068 : 进制转换 C C C&#xff08;容器stack…

OSCP:发送钓鱼电子邮件执行客户端攻击

概述 在渗透测试领域&#xff0c;钓鱼攻击是一种有效的客户端攻击手段&#xff0c;尤其在目标用户缺乏安全意识或系统存在未修复漏洞时&#xff0c;成功率较高。针对Windows平台&#xff0c;滥用Windows库文件&#xff08;.Library-ms&#xff09;是一种技术性较强但易于实施的…

记录一下 在Mac下用pyinstallter 打包 Django项目

安装: pip install pyinstaller 在urls.py from SheepMasterOneToOne import settings from django.conf.urls.static import staticurlpatterns [path("admin/", admin.site.urls),path(generate_report/export/, ReportAdmin(models.Report, admin.site).generat…

使用Python和TensorFlow/Keras构建一个简单的CNN模型来识别手写数字

一个简单的图像识别项目代码示例,使用Python和TensorFlow/Keras库来训练一个基本的CNN模型,用于识别MNIST手写数字数据集,并将测试结果输出到HTML。 代码运行效果截图: 具体操作步骤: 1. 安装所需的库 首先,确保你已经安装了所需的Python库: pip install tensorflow…

【学Rust写CAD】4 相对坐标系详解与实现要素概览

相对坐标系&#xff08;Relative Coordinate System, RCS&#xff09;是一个强大且灵活的工具&#xff0c;尤其在绘图、三维建模等领域中发挥着重要作用。以下是对相对坐标系的详细解析&#xff0c;包括其定义、应用、特性、与绝对坐标的区别、在CAD中的应用以及实现方式。 一…

个人的胡思乱想

转眼就是2025年&#xff0c;时间过的飞快&#xff0c;2024这一年&#xff0c;基本到处出差&#xff0c;因为换了新的方向&#xff0c;投身到半导体智能制造行业&#xff0c;依然是以技术为进入行业的切入点&#xff0c;不得不说&#xff0c;软件编程是万金油&#xff0c;干啥都…

鲸鱼算法 matlab pso

算法原理 鲸鱼优化算法的核心思想是通过模拟座头鲸的捕食过程来进行搜索和优化。座头鲸在捕猎时会围绕猎物游动并产生气泡网&#xff0c;迫使猎物聚集。这一行为被用来设计搜索策略&#xff0c;使算法能够有效地找到全局最优解。 算法步骤 ‌初始化‌&#xff1a;随机生成一…

2021.3.1的android studio版本就很好用

使用最新版的studio有个问题就是gradle版本也比较高&#xff0c;这样就容易出现之前项目不兼容问题&#xff0c;配置gradle可能会出现很多问题比较烦&#xff0c;所以干脆就用老版本的studio