C++滑动窗口技术深度解析:核心原理、高效实现与高阶应用实践

目录

一、滑动窗口的核心原理

二、滑动窗口的两种类型

1. 固定大小的窗口

2. 可变大小的窗口

三、实现细节与关键点

1. 窗口的初始化

2. 窗口的移动策略

3. 结果的更新时机

四、经典问题与代码示例

示例 1:和 ≥ target 的最短子数组(可变窗口)

示例 2:无重复字符的最长子串(哈希表辅助)

五、边界条件与易错点

1. 数组越界

2. 初始值的设置

3. 哈希表的使用

4. 循环条件错误

六、时间复杂度分析

七、滑动窗口的适用场景

八、滑动窗口的扩展

1. 结合前缀和

2. 结合单调队列

总结


一、滑动窗口的核心原理

        滑动窗口(Sliding Window) 是一种基于 双指针(Two Pointers) 的算法设计范式,核心思想是通过维护一个 动态窗口区间[left, right]),在遍历过程中调整窗口的左右边界,避免重复计算,从而将时间复杂度优化到 O(n)

  • 核心逻辑

    • 窗口扩张right 指针向右移动,扩大窗口,直到满足某个条件。

    • 窗口收缩:一旦满足条件,left 指针向右移动,缩小窗口,直到不满足条件。

    • 更新结果:在窗口调整过程中,记录最优解。


二、滑动窗口的两种类型

1. 固定大小的窗口
  • 特点:窗口长度固定为 k,通过滑动窗口的起始位置遍历所有可能的子区间。

  • 典型问题

    • 求长度为 k 的子数组的最大平均值

    • 长度为 k 的子字符串的排列匹配

C++ 代码模板

int fixedWindow(vector<int>& nums, int k) 
{int sum = 0, max_sum = 0;// 初始化窗口for (int i = 0; i < k; ++i) sum += nums[i];max_sum = sum;// 滑动窗口for (int right = k; right < nums.size(); ++right) {sum += nums[right] - nums[right - k]; // 窗口右移,更新和max_sum = max(max_sum, sum);}return max_sum;
}
2. 可变大小的窗口
  • 特点:窗口大小不固定,根据问题条件动态调整 left 和 right 指针。

  • 典型问题

    • 无重复字符的最长子字符串

    • 和大于等于 target 的最短子数组

C++ 代码模板

int variableWindow(string s) 
{unordered_map<char, int> window;int left = 0, max_len = 0;for (int right = 0; right < s.size(); ++right) {char c = s[right];window[c]++; // 窗口扩张// 窗口收缩条件:出现重复字符while (window[c] > 1) {char d = s[left];window[d]--; // 移出左边界字符left++;}max_len = max(max_len, right - left + 1); // 更新结果}return max_len;
}

三、实现细节与关键点

1. 窗口的初始化
  • 初始指针位置:通常 left = right = 0

  • 状态变量:如窗口内的和(sum)、哈希表(记录字符频率)等。

2. 窗口的移动策略
  • 扩张条件:一般通过 for 循环逐步移动 right

  • 收缩条件:在满足特定条件时,通过 while 循环移动 left,直到条件不满足。

3. 结果的更新时机
  • 固定窗口:每次窗口滑动后更新结果。

  • 可变窗口:在窗口收缩后或扩张过程中更新结果。


四、经典问题与代码示例

示例 1:和 ≥ target 的最短子数组(可变窗口)
int minSubArrayLen(int target, vector<int>& nums) 
{int left = 0, sum = 0;int min_len = INT_MAX;for (int right = 0; right < nums.size(); ++right) {sum += nums[right]; // 窗口扩张while (sum >= target) { // 窗口收缩条件min_len = min(min_len, right - left + 1);sum -= nums[left++]; // 窗口收缩}}return min_len == INT_MAX ? 0 : min_len;
}
示例 2:无重复字符的最长子串(哈希表辅助)
int lengthOfLongestSubstring(string s) 
{unordered_map<char, int> last_pos; // 记录字符最后出现的位置int left = 0, max_len = 0;for (int right = 0; right < s.size(); ++right) {char c = s[right];// 若字符 c 已存在且在窗口内,移动 left 到 last_pos[c] + 1if (last_pos.count(c) && last_pos[c] >= left) {left = last_pos[c] + 1;}last_pos[c] = right; // 更新字符位置max_len = max(max_len, right - left + 1);}return max_len;
}

五、边界条件与易错点

1. 数组越界
  • 在固定窗口中,需确保 right - k >= 0

  • 在可变窗口中,需检查 left 是否超过 right

2. 初始值的设置
  • 最小值初始化为 INT_MAX,最大值初始化为 INT_MIN

3. 哈希表的使用
  • 在字符频率统计中,需确保哈希表的键存在性(如用 count() 检查)。

4. 循环条件错误
  • 错误:在收缩窗口时使用 if 而非 while,导致窗口未完全收缩。

  • 正确:使用 while 循环确保窗口收缩到条件不满足。


六、时间复杂度分析

  • 固定窗口:O(n),每个元素被访问一次。

  • 可变窗口:O(n),每个元素最多被 left 和 right 各访问一次。


七、滑动窗口的适用场景

  1. 连续子数组/子字符串问题

    • 最短/最长满足条件的子数组

    • 子数组的和/乘积/频率统计

  2. 优化暴力解法

    • 将 O(n²) 的暴力枚举优化为 O(n)

  3. 数据流处理

    • 实时处理数据流中的窗口统计量(如移动平均值)


八、滑动窗口的扩展

1. 结合前缀和
  • 用于处理负数数组或更复杂的条件(如子数组和为 k)。

  • 示例代码:

    int subarraySum(vector<int>& nums, int k) 
    {unordered_map<int, int> prefix_sum; // 前缀和 -> 出现次数prefix_sum[0] = 1;int sum = 0, count = 0;for (int num : nums) {sum += num;if (prefix_sum.count(sum - k)) {count += prefix_sum[sum - k];}prefix_sum[sum]++;}return count;
    }
2. 结合单调队列
  • 用于维护窗口内的最大值/最小值(如滑动窗口最大值问题)。

  • 示例代码:

    vector<int> maxSlidingWindow(vector<int>& nums, int k) 
    {deque<int> dq; // 存储下标,按值单调递减vector<int> res;for (int i = 0; i < nums.size(); ++i) {// 移除超出窗口的元素if (!dq.empty() && dq.front() == i - k) dq.pop_front();// 维护单调队列while (!dq.empty() && nums[i] >= nums[dq.back()]) dq.pop_back();dq.push_back(i);// 记录窗口最大值if (i >= k - 1) res.push_back(nums[dq.front()]);}return res;
    }

总结

滑动窗口的核心在于 双指针的协同移动 和 窗口状态的动态维护。掌握以下要点:

  1. 明确窗口的 扩张与收缩条件

  2. 合理选择 数据结构(如哈希表、单调队列)维护窗口状态。

  3. 注意 边界条件 和 初始值设置

  4. 灵活结合其他算法(如前缀和、单调队列)解决复杂问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/69096.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.20 傅里叶变换:从时域到频域的算法实现

2.20 傅里叶变换&#xff1a;从时域到频域的算法实现 目录 #mermaid-svg-zrRqIme9IEqP6JJE {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-zrRqIme9IEqP6JJE .error-icon{fill:#552222;}#mermaid-svg-zrRqIme9IEqP…

刷题记录 动态规划-7: 63. 不同路径 II

题目&#xff1a;63. 不同路径 II 难度&#xff1a;中等 给定一个 m x n 的整数数组 grid。一个机器人初始位于 左上角&#xff08;即 grid[0][0]&#xff09;。机器人尝试移动到 右下角&#xff08;即 grid[m - 1][n - 1]&#xff09;。机器人每次只能向下或者向右移动一步。…

HarmonyOS:给您的应用添加通知

一、通知介绍 通知旨在让用户以合适的方式及时获得有用的新消息&#xff0c;帮助用户高效地处理任务。应用可以通过通知接口发送通知消息&#xff0c;用户可以通过通知栏查看通知内容&#xff0c;也可以点击通知来打开应用&#xff0c;通知主要有以下使用场景&#xff1a; 显示…

使用Java操作Redis数据类型的详解指南

SEO Meta Description: 详细介绍如何使用Java操作Redis的各种数据类型&#xff0c;包括字符串、哈希、列表、集合和有序集合&#xff0c;提供代码示例和最佳实践。 介绍 Redis是一种开源的内存数据结构存储&#xff0c;用作数据库、缓存和消息代理。它支持多种数据结构&#…

Unity飞行代码 超仿真 保姆级教程

本文使用Rigidbody控制飞机&#xff0c;基本不会穿模。 效果 飞行效果 这是一条优雅的广告 如果你也在开发飞机大战等类型的飞行游戏&#xff0c;欢迎在主页搜索博文并参考。 搜索词&#xff1a;Unity游戏(Assault空对地打击)开发。 脚本编写 首先是完整代码。 using System.Co…

图论常见算法

图论常见算法 算法prim算法Dijkstra算法 用途最小生成树&#xff08;MST&#xff09;&#xff1a;最短路径&#xff1a;拓扑排序&#xff1a;关键路径&#xff1a; 算法用途适用条件时间复杂度Kruskal最小生成树无向图&#xff08;稀疏图&#xff09;O(E log E)Prim最小生成树无…

车载软件架构 --- 基于AUTOSAR软件架构的ECU开发流程小白篇

我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 简单&#xff0c;单纯&#xff0c;喜欢独处&#xff0c;独来独往&#xff0c;不易合同频过着接地气的生活…

在CentOS服务器上部署DeepSeek R1

在CentOS服务器上部署DeepSeek R1,并通过公网IP与其进行对话,可以按照以下步骤操作: 一、环境准备 系统要求: CentOS 8+(需支持AVX512指令集)。 硬件配置: GPU版本:NVIDIA驱动520+,CUDA 11.8+。 CPU版本:至少16核处理器,64GB内存。 存储空间:原始模型需要30GB,量…

nlp文章相似度

1. 基于词袋模型&#xff08;Bag of Words&#xff09; 方法&#xff1a; 将文本表示为词频向量&#xff08;如TF-IDF&#xff09;&#xff0c;通过余弦相似度计算相似性。 优点&#xff1a;简单快速&#xff0c;适合短文本或主题明显的场景。 缺点&#xff1a;忽略词序和语…

Linux 传输层协议 UDP 和 TCP

UDP 协议 UDP 协议端格式 16 位 UDP 长度, 表示整个数据报(UDP 首部UDP 数据)的最大长度如果校验和出错, 就会直接丢弃 UDP 的特点 UDP 传输的过程类似于寄信 . 无连接: 知道对端的 IP 和端口号就直接进行传输, 不需要建立连接不可靠: 没有确认机制, 没有重传机制; 如果因…

Android学习21 -- launcher

1 前言 之前在工作中&#xff0c;第一次听到launcher有点蒙圈&#xff0c;不知道是啥&#xff0c;当时还赶鸭子上架去和客户PK launcher的事。后来才知道其实就是安卓的桌面。本来还以为很复杂&#xff0c;毕竟之前接触过windows的桌面&#xff0c;那叫一个复杂。。。 后面查了…

unity学习26:用Input接口去监测: 鼠标,键盘,虚拟轴,虚拟按键

目录 1 用Input接口去监测&#xff1a;鼠标&#xff0c;键盘&#xff0c;虚拟轴&#xff0c;虚拟按键 2 鼠标 MouseButton 事件 2.1 鼠标的基本操作 2.2 测试代码 2.3 测试情况 3 键盘Key事件 3.1 键盘的枚举方式 3.2 测试代码同上 3.3 测试代码同上 3.4 测试结果 4…

深度剖析八大排序算法

欢迎并且感谢大家指出我的问题&#xff0c;由于本人水平有限&#xff0c;有些内容写的不是很全面&#xff0c;只是把比较实用的东西给写下来&#xff0c;如果有写的不对的地方&#xff0c;还希望各路大牛多多指教&#xff01;谢谢大家&#xff01;&#x1f970; 在计算机科学领…

在深度学习中,样本不均衡问题是一个常见的挑战,尤其是在你的老虎机任务中,某些的中奖倍数较高

在深度学习中,样本不均衡问题是一个常见的挑战,尤其是在你的老虎机任务中,某些的中奖倍数较高 在深度学习中,样本不均衡问题是一个常见的挑战,尤其是在你的老虎机任务中,某些的中奖倍数较高而其他的中奖倍数较低。这种不均衡会导致模型偏向于高频样本(低中奖倍数的),…

04树 + 堆 + 优先队列 + 图(D1_树(D10_决策树))

目录 一、引言 二、算法原理 三、算法实现 四、知识小结 一、引言 决策树算法是一种常用的机器学习算法&#xff0c;可用于分类和回归问题。它基于特征之间的条件判断来构 建一棵树&#xff0c;树的每个节点代表一个特征&#xff0c;每个叶节点代表一个类别或回归值。决策…

简单介绍一下什么是OpenFeign

OpenFeign是什么&#xff1f; OpenFeign是一个声明式的Http客户端&#xff0c;它可以用来发起Http请求 它主要用于SpringCloud微服务之间的通讯&#xff0c;让调用另一个服务的Java方法和调用本地方法一样快速和便捷 之前我们是用RestTemplate写一大堆东西发起Http请求远程调…

Hugging Face GGUF 模型可视化

Hugging Face GGUF 模型可视化 1. Finding GGUF files (检索 GGUF 模型)2. Viewer for metadata & tensors info (可视化 GGUF 模型)References 无知小儿&#xff0c;仙家雄霸天下&#xff0c;依附强者才是唯一的出路。否则天地虽大&#xff0c;也让你们无路可走&#xff0…

Python 与 PostgreSQL 集成:深入 psycopg2 的应用与实践

title: Python 与 PostgreSQL 集成:深入 psycopg2 的应用与实践 date: 2025/2/4 updated: 2025/2/4 author: cmdragon excerpt: PostgreSQL 作为开源关系型数据库的佼佼者,因其强大的功能与性能被广泛应用于各种项目中。而 Python 则因其简洁易用的语法、丰富的库和强大的…

Vant框架:助力移动端开发的利器

Vant框架&#xff1a;助力移动端开发的利器 在移动互联网飞速发展的今天&#xff0c;开发一款用户体验出色、界面美观且功能强大的移动端应用并非易事。而Vant框架&#xff0c;作为一款专为移动端设计的Vue.js UI组件库&#xff0c;凭借其轻量级、高度可定制化以及丰富的组件库…