深度学习11-20

1.神经元的个数对结果的影响:
(http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)
在这里插入图片描述
(1)神经元3个的时候
在这里插入图片描述在这里插入图片描述
(2)神经元是10个的时候
在这里插入图片描述
神经元个数越多,可能会产生过拟合现象。

2.正则化和激活函数

(1)隐层1的神经元增加一个,相当于输入层输入一组参数
在这里插入图片描述
(2)正则化的作用
1)惩罚力度对结果的影响
惩罚力度=训练的loss+r(w)
惩罚力度小的时候,模型奇形怪状。
随着浪荡增大,测试集的效果更好
在这里插入图片描述

2)神经元,参数个数对结果的影响
64,128,256,512
(3)激活函数
sigmoid函数当梯度为0(斜率为0)的时候,不进行更新和传播,即梯度消失。
在这里插入图片描述
所以提出reLu函数,变量x<0,直接为0.

3.标准化

(1)数据预处理
把点中心化:把实际坐标值-均值。放缩:除以标准差
在这里插入图片描述
(2)参数初始化
(d,h)矩阵的行和列数
在这里插入图片描述
(3)Drop-out:在神经网络的训练过程中,在某一次的迭代中,每一层随机的按照固定的比例杀死一些神经元,不参与后序的更新与传播。杀死的神经元可能会在其他迭代中派上用场。Drop-out是个比例。防止神经网络训练过程太复杂。测试阶段没必要杀死。
过拟合是神经网络的一个大问题。
在这里插入图片描述
(4) 文字作填充、图像作标准化
在这里插入图片描述
根据loss值反向传播求出w1,w2,w3

过拟合解决方法:drop-out或者relu函数

5.卷积神经网络应用领域

(1)

在这里插入图片描述
(2)应用领域:检测任务、分类与检索、超分辨率重构、医学任务(ocr的字体识别)、无人驾驶、人脸识别
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

6.卷积网络与传统网络的区别

  1. NN(神经网络)-》CNN(卷积神经网络)
    在这里插入图片描述

  2. cnn处理三维数据(hwc)
    在这里插入图片描述

  3. 卷积层提取特征,池化层压缩特征,全连接层用一组权重参数连接起来

5.例子,x对应输入数据,w代表权重参数,蓝色矩阵下面的脚标就代表权重参数。最后的结果总和对应的是绿色矩阵里面的参数。 这个12也代表粉红色的那个331小矩阵的值为12.
在这里插入图片描述
也就是内积计算
在这里插入图片描述
6.图像颜色通道
(1)图像颜色通道 :R通道、G通道、B通道
在这里插入图片描述
在这里插入图片描述

(2)输入数据第三个维度c为3的话,过滤器filter的第三个维度也等于3.
如果过滤器(k,l,w)=(4,4,3),所以原始输入的数据(a,b,c)里面(a,b)选取也要(4,4)这样才能一一对应。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
将R+G+B的值相加 sum=0+2+0=2
最后加上偏置参数b
sum+b=2+1=3
所以输出的绿色第一个矩阵是3
(3)得到特征图表示
第三个维度指的是深度,深度也就是特征图的个数
7.步长与卷积核大小对结果的影响
在这里插入图片描述
(1)步长越大是粗粒度的,提取的特征越少。
在这里插入图片描述
在这里插入图片描述
e.g.6:6代表的是6个过滤器。
e.g.10: 10代表的是10个过滤器。
在这里插入图片描述

(2)图像任务一般是步长为1的(然后图像中h,w是一样的),提取的特征比较多,但是时间效率低。
(3)卷积核越小越细粒度的提取(一般最小的卷积核是3*3)
(4)边缘填充:越往边界的点,使用的次数越小;越往中间的点,使用的次数越多。
0只是做一下扩充,对最终结果没有影响。填充1圈0也可以,填充2圈0也可以,看你自己。

8.特征图尺寸计算与参数共享
(1)H2:代表结果;H1代表原始的输入;F代表过滤器的尺寸;2P:代表H长度是两边都要有0
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)权重参数,也就是每个区域选择相同的卷积核计算,也就是权重参数。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/38398.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

langchain报错

ImportError: cannot import name ‘BaseModel’ from ‘langchain_core.pydantic_v1’ (/Users/sunwenjun/anaconda3/envs/python310/lib/python3.10/site-packages/langchain_core/pydantic_v1/init.py) pip install -U pydantic pip install -qU langchain-openai

第3章-数据类型和运算符

#本章目标 掌握Python中的保留字与标识符 理解Python中变量的定义及使用 掌握Python中基本数据类型 掌握数据类型之间的相互转换 掌握eval()函数的使用 了解不同的进制数 掌握Python中常用的运算符及优先级1&#xff0c;保留字与标识符 保留字 指在Python中被赋予特定意义的一…

AI时代下的个体创业

核心理念&#xff1a; 少工作&#xff0c;多赚钱&#xff0c;享受生活&#xff1a;减少工作量&#xff0c;提高工作效率&#xff1b;设定主观的赚钱目标&#xff0c;根据兴趣和追求持续获利&#xff1b;平衡工作与生活&#xff0c;实现时间和地点自由。个人成长与试错&#xf…

FireAct:使用智能体(agent)微调大语言模型

1.概述 近年来,针对语言模型(LMs)的研究致力于探索其与外部工具或环境互动的能力,以推进新型语言代理的发展。此类代理具备从环境反馈中汲取新知识、通过语言推理进行连续决策,以及借助自我反思提升任务解决能力的能力。工业界的进展,如ChatGPT插件,凸显了语言代理在实际…

微信小程序的跳转页面

在微信小程序中&#xff0c;要实现从当前页面返回到指定页面的功能&#xff0c;通常不直接使用“返回上一页”的逻辑&#xff0c;而是利用小程序的页面栈管理和navigateBack或者重新定向到目标页面的API。下面我将介绍两种主要的方法&#xff1a; 方法一&#xff1a;使用 navi…

[C++][设计模式][备忘录模式]详细讲解

目录 1.动机2.模式定义3.要点总结4.代码感受 1.动机 在软件构建过程中&#xff0c;某些对象的状态转换过程中&#xff0c;可能由于某中需要&#xff0c;要求程序能够回溯到对象之前处于某个点的状态。 如果使用一些公开接口来让其他对象得到对象的状态&#xff0c;便会暴露对象…

pygame下载安装流程

方案一&#xff1a;直接下载 使用cmd打开窗口&#xff1a; 使用命令&#xff1a;pip install pygame即可下载最新pygame安装包 方案二&#xff1a;下载指定版本 我们需要去python官网查看对应包和发布版本&#xff1a; python官网 进去后点击PyPI&#xff0c;查找python发布…

C#异常捕获

前言 在C#中&#xff0c;我们无法保证我们编写的程序没有一点bug&#xff0c;如果我们对于这些抛出异常的bug不进行任何的处理的话&#xff0c;那么我们的软件在抛出这些异常的时候就会崩溃&#xff0c;也就是软件闪退&#xff0c;并且这种闪退由于我们没有进行处理&#xff0…

初阶数据结构之堆讲解

本篇文章带大家学习的是堆&#xff0c;还请各位观众老爷给个三连 正片开始 堆的概念 如果有一个关键码的集合 K { &#xff0c; &#xff0c; &#xff0c; … &#xff0c; } &#xff0c;把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中&#xff0c;并满…

【Redis】主从复制

https://www.bilibili.com/video/BV1cr4y1671t?p101 https://blog.csdn.net/weixin_54232666/article/details/128825763 单节点Redis的并发能力是有上限的&#xff0c;要进一步提高Redist的并发能力&#xff0c;就需要搭建主从集群&#xff0c;实现读写分离。 主从搭建 这…

访客(UV)、点击量(PV)、IP、访问量(VV)概念

1、https://www.cnblogs.com/QingPingZm/articles/13855808.htmlhttps://www.cnblogs.com/QingPingZm/articles/13855808.html

SAAS多租户系统的详细设计方案,后台数据库及各类框架详细设计方案-程序员必被的技术

SAAS多租户系统的详细设计方案 多租户&#xff08;Multi-Tenant&#xff09;架构是一种在单个软件实例中服务多个客户&#xff08;租户&#xff09;的设计方式。每个租户的数据和配置是独立的&#xff0c;但共享同一个应用程序和基础设施。设计一个高效的SAAS多租户系统需要考…

监控电脑的软件有哪些?精选8大监控电脑的软件

根据当前市场反馈和功能评价&#xff0c;以下是八款备受推崇的电脑监控软件推荐&#xff0c;适合不同企业和组织的监控与管理需求&#xff1a; 1.安企神监控软件 特点&#xff1a;全面的局域网监控工具&#xff0c;擅长网络设备监控、网络性能管理和故障诊断。提供员工电脑屏幕…

配置Eclipse的C++环境

配置Eclipse的C环境主要包括以下几个步骤&#xff0c;以下是详细的步骤和说明&#xff1a; 1. 下载和安装JDK&#xff08;如果尚未安装&#xff09; JDK&#xff08;Java Development Kit&#xff09;是Eclipse运行的基础&#xff0c;如果尚未安装JDK&#xff0c;请从Oracle官…

计算机网络:408考研|湖科大教书匠|原理参考模型II|学习笔记

系列目录 计算机网络总纲领 计算机网络特殊考点 计算机网络原理参考模型I 计算机网络原理参考模型II 目录 系列目录更新日志前言应用层(Application Layer)一、应用层概述二、客户/服务器方式和对等方式三、动态主机配置协议(DHCP, Dynamic Host Configuration Protocol)四、域…

最优化方法Python计算:线性规划的标准化

目标函数和约束函数均为线性函数的最优化问题 { minimize c ⊤ x s.t. A i q x ≤ b i q A e q x b e q x ≥ o ( 1 ) \begin{cases} \text{minimize}\quad\quad\boldsymbol{c}^\top\boldsymbol{x}\\ \text{s.t.\ \ }\quad\quad\boldsymbol{A}_{iq}\boldsymbol{x}\leq\bold…

微机原理与接口技术:重点内容|计算机系统|学习笔记

系列目录 前言 只将最重要的知识点考点列出来方便学习复习 目录 系列目录前言第1章 微型计算机概述第2章 16位和32位微处理机&#x1f31f;16位微处理器 8086 第3章 Pentium 的指令系统常用指令 第4章 存储器、存储管理和高速缓存技术第5章 微型计算机和外设的数据传输第6章 串…

Socket网络编程基础教程

Socket网络编程基础教程 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将深入探讨Java中的Socket网络编程&#xff0c;这是实现网络通信的重要基础。 …

echarts进度环叠加背景图

vue组件实现&#xff1a; <template><div class"ringWrap" :style"{transform:scale(${scale})}"><!-- 圆环 --><div :id"chartId" :style"{width:220px,height:220px,transform:scale(${scale})}"></div…

一个适用于标准普通 WordPress 博客站点的 CloudFlare 缓存规则

长期以来很多 WordPress 站长们都以为 WordPress 这样的动态博客网站系统的 CDN 缓存效果是有限的,尤其是 WordPress 伪静态后的.html 是无法被 CDN 完美缓存的。其实这个是跟你的博客网站架构有关系,如果你的 WordPress 网站用的是单用户模式(就是只需要网站管理员登录,不…