1 QNX编译
 1.1 基本概念
 QNX可以直接使用Linux Makefile编译库和二进制,在Makefile文件中指定CC=aarch64-unknown-nto-qnx7.0.0-g++,或者CC=x86_64-pc-nto-qnx7.0.0-g++,保存退出后,运行source /qnx_sdk_path/qnxsdp-env.sh,然后再运行make即可。
 QNX官方不建议直接使用xxx-g++,而是使用q++ -Vxxx,q++通过选项-Vxxx找到对应的g++编译器,如何获取xxx,可以使用q++ -V查询。并且只能将选项-Vxxx加到C语言的CFLAGS或者C++语言的CXXFLAGS中,不能加到其它地方,否则编译会出现各种奇怪的错误。
 在q++编译中宏-D_QNX_SOURCE的作用是包括POSIX的头文件,包括数据类型、宏声明、库函数等。如果CXXFLAGS只加了-std=C++11,但没有-D_QNX_SOURCE,就算是包含了头文件unistd.h等,还是无法使用POSIX相关库函数和声明等。C++11先前被称作C++0x。
 需要注意的是QNX下Makefile链接线程库使用-pthread而不是Linux风格的-lpthread,而其它的库仍然和Linux一样,需要添加前缀-l,例如-lcrypto。
 source /qnx_sdk_path/qnxsdp-env.sh
 x86_64-pc-nto-qnx7.0.0-gcc \
 -o tcp_server tcp_server.c -lsocket
 1.2 showcase
 CC = q++
 .PHONY: clean
 OBJS = src/main.o
 CFLAGS = \
         -I./include \
         -Vgcc_ntox86_64_cxx
 LDFLAGS = -pthread -lcrypto
 # compile every cpp file to object
 %.o: %.cpp
         $(CC) $(CFLAGS) -c $^ -o $@
 # link all of the objects to hello
 hello: $(OBJS)
         $(CC) $(CFLAGS) $(OBJS) $(LDFLAGS) \
             -o $@
 clean:
         rm -rf $(OBJS)
         rm -rf hello
 1.3 QNX proprietary Makefile
 variant:
 g-le: A debugging version of a little-endian executable
 o-le: executable
 a-le: static library, a means archive
 so-le: shared library
 mkdir my_project
 cd my_project
 mkdir inc
 mkdir src
 touch common.mk
 touch Makefile
 addvariant aarch64 o-le
 le: little endian
 PINFO: package info
 1.4 build_files
 xxx.build.tmpl:一般一个分区一个build文件。Because .build file does not support MACRO, could use Linux filepp command to replace MACRO.
 filepp -DMACRO_TEST=${MACRO_TEST} \
 my.build > my.build_new
 on -R0x7 pipe &
 -R:表示CPU掩码,亲和性;0x7 = 0111,CPU0、CPU1、CPU2,不包含CPU3
 mkifs xxx.build.tmpl xxx.ifs
 dumpifs xxx.ifs
 /proc/boot
 2 进程和sepol
 2.1 进程优先级
 QNX的线程优先级,是一个0 - 255的数字,数字越大优先级越高。所以,优先级0是内核中的idle线程;同时,优先级64是一个分界岭,就是说,优先级1 - 63是非特权优先级,一般用户都可以用,而64 - 255必须是有root权限的线程才可以设。QNX进程或者线程刚创建时的优先级是10。
 procnto-smp-instr: Instrumented
 2.2 QNX secpol
 secpol是QNX 7.0才引入的,类似于Android sepolicy,运行on命令时指定参数-T xxx_service_t即可。
 编译时需要将SDK 7.0中的aarch64le/bin/secpol和aarch64le/bin/secpolmonitor(不能与secpolgenerate同时运行,因为这2个命令用到同一个目录,运行有冲突)集成到image中。
 allow_attach: resmgr_attach()
 allow_link: pathmgr_symlink()
 __SECURE_BOOT_SECPOL__
 allow_attach io_pkt_v6_hc_t {
     /path/to/socket_name
 };
 /proc/boot/secpol.bin
 secpolmonitor -pasno /tmp/secpol.out &
 secpolmonitor -pasno /tmp/secpol.out \
 -S subrangedAble &
 genpol
 2.3 列出所有的进程加载了哪些so库
 pidin -F "%O"
 3 console
 3.1 Android vdev console
 # x86 vdev ser8250
 # aarch64 ttyAMA0
 # fdtdump, qnx Configuring guests
 vdev vdev-pl011.so
     loc 0x1c090000
     intr gic:37
 3.2 命令
 To attach to an existing session:
 dtach -a <socket> <options>
 Detach from a session
 In an attached session, type Ctrl+\
 QVM <-> dtach server <-> dtach client <-> QNX shell
 ptsname slave (QNX QVM) <-> /dev/ptmx master (QNX dtach, other node by QNX) <-> /tmp/console (QNX dtach, unix-domain socket server) <-> dtach client (dtach -a /tmp/console) <-> QNX shell
 3.3 dtach showcase
 server:
 on -T xxx_t -u 0:0 \
 -d /usr/bin/dtach \
 -n /path/to/socket_name \
 -r winch qvm @/vm/images/linux-la.config
 -T apply secpol type to dtach
 -u uid:gid
 -d daemon
 -n new session
 -r redraw, winch means windows change
 client:
 dtach -a /path/to/socket_name
 -a attach
 3.4 slogger
 https://github.com/christianzeroc/openqnx
 slog2info是slogger2的客户端。
 4 Block
 4.1 Block设备
 /dev/hd0t12 - t表示type,12表示FAT32分区
 /dev/hd1t6 - t表示type,6表示文件系统类型FAT
 /fs/usb0
 fdisk /dev/hd1 show
 dinit:disk initialization
 [25-Jan-2022]
 mount block device as read write, find command from .build file.
 mount -tqnx6 -u -w /dev/xxx /xxx
 4.2 Android和QNX共享数据
 QNX ->
 ls /dev/hd0.*
 mkdosfs /dev/hd0.xxx
 mount -t dos /dev/hd0.xxx /mnt
 Android ->
 ls -al /dev/block/by-name/
 mount -t vfat -o sync,rw /dev/block/vda17 /mnt/share
 5 Display
 5.1 keyboard
 vdev vdev-virtio-input.so
 /usr/share/keyboard/US_101.kbd
 slog2info  | grep screen
 slog2info  | grep qvm
 5.2 screen
 #include <screen/screen.h>
 screen_set_event_property_iv()
 iv: integer value
 cv: char value
 6 Network
 6.1 FreeBSD
 QNX network commands all come from BSD family.
 ral0: devnp-ral.so, Ralink
 wm0: devnp-e1000.so, wiseman, name comes from FreeBSD
 nw_dll_syms
 https://github.com/ownmac/qnx_drv/tree/master/hardware/devnp/e1000
 6.2 Basic Commands
 io-pkt-v6-hc: hardware crypto, crypto is OpenSSL library.
 # TUNnel: peer=/dev/qvm/la/la_to_host,\
 # bind=/dev/vdevpeer/vp0,
 on io-pkt-v6-hc -d vdevpeer-net \
 peer=/dev/qvm/la/la_to_host,\
 bind=/dev/vdevpeer/vp0,\
 mac=bbbbbbbbbbbb
 # mount -T io-pkt -o <options>
 # options for network driver
 # unload eth0 driver
 # call driver xxx_detach()
 ifconfig eth0 destroy
 ifconfig bridge0 create
 ifconfig bridge0 destroy
 brconfig bridge0 delete eth0
 6.3 iptables NAT for hypervisor
 PREROUTING:DNAT专用。
 POSTROUTING:SNAT专用。
 MASQUERADE:SNAT转换时,如果--to-source的地址经常变化,那么就无法在iptables命令中固定,譬如路由器WAN口上的IP地址,内网设备通过WAN口访问外网时,只要指定使用MASQUERADE参数,iptables就会统一将内网设备的IP地址替换为路由器WAN口的IP地址。
 Figure 6-1 NAT chain
 vp0: 192.168.0.98 (QNX veth)
 eth0: 192.168.0.99 (Android veth)
 eth1: 192.168.5.99 (Android USB Ethernet)
 Because PC could not get QNX vp0 MAC, so use the following commands for NAT, PC client should connect eth1 IP.
 # client -> eth1 -> eth0 -> vp0 -> server
 iptables -I FORWARD 1 -i eth1 -o eth0 -j ACCEPT
 iptables -I FORWARD 1 -i eth0 -o eth1 -j ACCEPT
 iptables -t nat -A PREROUTING -i eth1 -j DNAT --to-destination 192.168.0.98
 iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
 echo 1 > /proc/sys/net/ipv4/ip_forward
 6.4 QNX sshd
 passwordless登陆,QNX Neutrino 6.6.0用户密码加密默认算法是SHA-512,1000轮计算,并附带16字节的盐值。
 1) Windows puttygen产生公匙和私匙.ppk
 2) Windows WinSCP导入私匙.ppk
 3) 将Windows puttygen产生的公匙转换为QNX的格式
 QNX shell:
 ssh-keygen -i -f win_rsa.pub > /path/to/authorized_keys
 4) /path/to/sshd_config
 StrictModes no
 PasswordAuthentication yes
 PubkeyAuthentication yes
 AuthorizedKeysFile /path/to/authorized_keys
 6.5 Windows as ssh server
 1) Install ssh server for Win10: BvSshServer (original name is WinSSHD)
 https://www.bitvise.com/ssh-server-download
 Bitvise SSH Server installer
 a) Personal Edition
 b) Open easy settings
 c) Server settings
 d) Virtual accounts
 - Virtual account password
 - test/888888
 - Save changes
 e) Start Server
 2) 在QNX环境下,将Windows下的文件复制到QNX系统中:
 scp -S /path/to/ssh virtual_account_name@192.168.3.181:/d:/test/config.ips  /tmp
 如果ssh不在/usr/bin/ssh下,需要给scp指定-S参数,否则scp执行失败。
 6.6 QNX Momentics Debug
 1) QNX shell
 Run qconn, default qconn port: 8000
 Enable bridge or NAT
 2) Windows Momentics IDE
 [Windows][Perspective][Open Perspective][QNX System Information]
 [Target Navigator][New QNX Target]
 Configure IP and 8000, then Momentics will connect to QNX automatically.
 6.7 eAVB
 ptpd-avb: gPTP
 ptpd: IEEE1588 v2
6.8 QNX adb test
 1) Android
ip route get <X.Y.Z.5>
 ip rule add to X.Y.Z.0/24 lookup main pref 9999
 setprop service.adb.tcp.port 5555
 stop adbd
 start adbd
 iptables-save | grep 5555
 iptables -A INPUT -i eth0 -p tcp -m tcp --dport 5555 -j ACCEPT
 iptables -A OUTPUT -o eth0 -p tcp -m tcp --dport 5555 -j ACCEPT
 2) QNX
 mount block device as read write, find command from .build file.
 mount -tqnx6 -u -w /dev/xxx /xxx
 Copy libnbutil.so.1 to /path/to/lib as LD_LIBRARY_PATH shown.
route get <ANDROID_IP>
 adb connect <ANDROID_IP>
 adb shell
 7 x86 USB
 7.1 FreeBSD
 QNX USB API and umass (src/sys/dev/usb/umass.c) all come from BSD family.
 FreeBSD SCSI software architecture is called CAM (Common Access Method), it developed by Future Domain and other SCSI vendors. Linux has little support for a SCSI CAM system yet (mainly for booting from hard disk). CAM even supports target mode, so one could disguise ones computer as a peripheral hardware device (e.g. for a small SCSI net).
 7.2 usblauncher_otg
 client communicates with io-usb through /dev/io-usb/io-usb
 pps: Persistent Publish/Subscribe
 /pps/qnx/device/usb_ctrl
 usbd_alloc(): /memory/below4G, pidin syspage=asinfo (Address Space Information)
 pidin -p qvm irqs
 while true; do /bin/slay qvm; \
 if [ $? -ne 1 ]; then break; fi; \
 done
 io-usb-otg -d xhci
 devb-umass cam pnp
 usb -vvvv
 slay devb-umass
 7.3 USB PHY Tunning
 1) QNX设备地址映射函数
 #include <sys/mman.h>
 #include <sys/neutrino.h>
 ThreadCtl(_NTO_TCTL_IO, 0); 
 void *ptr = mmap_device_memory(0,
     len,
     PROT_READ|PROT_WRITE| \
     PROT_NOCACHE,
     0,
     0xb8000);
 if (ptr == MAP_FAILED) {}
 2) in32_x86 and out32
 # get xHCI BAR0 in QNX, skip bit0-bit3 of BAR0
 pci-tool -d 0:21:0 --read=CFG:0x10
 # APL (Gen9, A39X0) 8-port MPH xHCI PORTSC1
 in32_x86 <addr from the last step + 0x480>
 7.4 x86 xHCI透传
 APL (Gen9, A39X0) 8-port MPH xHCI透传给Android后,尽管在QNX下可以使用in32_x86命令和函数mmap_device_memory()读写xHCI寄存器,但是由于IOMMU中仍然有xHCI的DMAR和INTR配置,所以即使卸载Android端xHCI驱动,加载QNX端xHCI驱动,也不会工作;要想让xHCI在QNX下可以工作,需要删除xHCI在IOMMU中的DMAR和INTR配置。
 8 x86 GPIO
8.1 P2SB
 PCH(Platform Controller Hub)上大部分设备可以通过PCIe或IO方式访问,但PCH上部分设备需要访问PCH的私有空间,这部分空间通过P2SB(Primary to SideBand)的SBREG_BAR寄存器映射到内存空间,这段空间被称为PCR(PCH Private Configuration Space Register)。每个设备对应一个PortID,PortID表示设备在PCR空间的偏移量,再加上寄存器偏移就可以获取寄存器的地址。
8.2 P2SB GPIO
 x86下GPIO寄存器位于PCH的私有空间。GPIO被分组,每组对应一个PCR的PortID。GPIO community和PortID的对应关系如下所示。
 SouthWest: 0xC0
 NorthWest: 0xC4
 North: 0xC5
 West: 0xC7
 每个community的每个GPIO有2个寄存器,分别是PADCFG0(偏移0)和PADCFG1(偏移4),2个寄存器占用8个字节的地址,所以计算某个GPIO 2个寄存器的绝对地址方法如下,其中PortID是每个GPIO community在PCR空间的偏移量。
 基地址pad_regs = 0xf8000000(P2SB bar0) + (PortID << 16) + 0x500(read from PADBAR);
 某个GPIO padcfg0的绝对地址 = pad_regs + PADCFG0 + 在bank内的GPIO编号 x 8;
 某个GPIO padcfg1的绝对地址 = pad_regs + PADCFG1 + 在bank内的GPIO编号 x 8;
 每个community的32个GPIO公用2个寄存器,分别是GPI_IS(GPI Interrupt Status)和GPI_IE(GPI Interrupt Enable),2个中断相关寄存器的绝对地址计算方法如下,其中PortID是每个GPIO community在PCR空间的偏移量。
 基地址regs = 0xf8000000(P2SB bar0) + (PortID << 16);
 某个GPIO GPI_IS的绝对地址 = regs + 0x100(GPI_IS)+ 在bank内的GPIO编号 / 32;
 某个GPIO GPI_IE的绝对地址 = regs + 0x110(GPI_IE)+ 在bank内的GPIO编号 / 32;
 /sys/class/gpio/gpiochip434/label
 跟dts或者ACPI dsl文件对应上,是哪一组
 gpiochip434 - North
 gpiochip357 - Northwest
 gpiochip310 - West
 gpiochip267 - Southwest
 9 Abbreviations
 APIC:读作ei pic
 APS:adaptive partitioning
 CAM:UNIX/QNX SCSI Common Access Methods
 dtach:detach
 hogs:List the processes that are hogging the CPU
 IFS:Image File System,QNX系统镜像
 IPL:Image Program Loader,bootloader程序
 mbuf: Unix TCP/IP message buffer
 OCP:Open Core Protocol
 OpenUSBDI: Open USB Driver Interface
 P2SB:Primary to SideBand
 pbuf: lwip packet buffer
 pidin:类似于Linux ps,也可以执行pidin arg
 PPS: QNX Persistent Pusblish/SubScribe
 QNX: Quick UNIX
 slay <pid>:kill进程
 slm: System Launch and Monitor
 smmuman:IOMMU/SMMU Manager
 ttyAMA: ARM AMBA PL011
 vp0: vdevpeer