以下是基于改进型节点重构小波包频带能量谱结合概率神经网络(Probabilistic Neural Network, PNN)实现轴承联合故障诊断的MATLAB代码示例:
matlab
 % 步骤1:节点重构小波包频带能量谱提取特征
 function features = extractFeatures(signal)
 % 设置小波包分解的参数
 waveletName = ‘db4’; % 使用Daubechies 4小波
 levels = 4; % 小波包分解的层数
 numBands = 16; % 频带的数量
% 小波包分解
[C, ~] = wavedec(signal, levels, waveletName);% 节点重构小波包频带能量谱提取特征
features = zeros(1, numBands);
for i = 1:numBandsband = wrcoef('d', C, levels, i);features(i) = sum(abs(band).^2);
end
end
% 步骤2:训练概率神经网络(PNN)
 function net = trainPNN(features, labels)
 % 创建PNN网络
 net = newpnn(features’, labels’);
% 训练PNN网络
net = train(net, features', labels');
end
% 步骤3:使用PNN进行故障诊断
 function diagnosis = diagnoseFault(net, signal)
 % 提取信号特征
 features = extractFeatures(signal);
% 使用PNN进行故障诊断
y = sim(net, features');% 返回诊断结果
[~, diagnosis] = max(y);
end
% 步骤4:主程序
 % 假设有轴承数据集,包括信号和对应的故障标签
 load(‘bearing_dataset.mat’); % 加载数据集
% 随机划分训练集和测试集
 rng(1); % 设置随机种子,以确保结果可重现
 indices = crossvalind(‘HoldOut’, size(signals, 2), 0.3); % 70%训练集,30%测试集
 trainSignals = signals(:, indices);
 trainLabels = labels(indices);
 testSignals = signals(:, ~indices);
 testLabels = labels(~indices);
% 训练PNN
 trainFeatures = [];
 for i = 1:size(trainSignals, 2)
 trainFeatures = [trainFeatures; extractFeatures(trainSignals(:, i))]; % 提取训练集特征
 end
 net = trainPNN(trainFeatures, trainLabels);
% 在测试集上进行故障诊断
 testDiagnosis = [];
 for i = 1:size(testSignals, 2)
 diagnosis = diagnoseFault(net, testSignals(:, i)); % 故障诊断
 testDiagnosis = [testDiagnosis; diagnosis];
 end
% 计算诊断准确率
 accuracy = sum(testDiagnosis == testLabels) / length(testLabels) * 100;
 fprintf(‘诊断准确率:%.2f%%\n’, accuracy);
 请注意,以上代码仅为示例代码,实际应用中可能需要根据具体情况进行修改和优化。此外,代码中使用的数据集和参数需要根据实际情况进行调整。