anaconda3安装及jupyter环境配置教程

news/2025/12/6 19:49:59/文章来源:https://www.cnblogs.com/lzjhuiyi/p/19316461

{ "cells": [ { "cell_type": "markdown", "id": "c8425656-904b-468d-9f78-c6e8978a0e29", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "anaconda3安装及jupyter环境配置教程" ] }, { "cell_type": "markdown", "id": "04d8a378-0325-4033-98c9-9f52c2a4444b", "metadata": {}, "source": [ "1.下载" ] }, { "cell_type": "markdown", "id": "f6a1a2aa-65c4-41d9-8c73-0e778c012bd9", "metadata": {}, "source": [ "可以去搜索这个地址: https://www.anaconda.com/download/success;\n", "之后下载Miniconda" ] }, { "cell_type": "markdown", "id": "788556c6-0d87-4ad9-ad34-ab3dfc04b557", "metadata": {}, "source": [ "2.安装" ] }, { "cell_type": "markdown", "id": "476818f8-e914-43e7-a00d-5176b469df80", "metadata": {}, "source": [ "找到下载Miniconda的路径,双击点击安装,安装步骤:傻瓜式安装就可以" ] }, { "cell_type": "markdown", "id": "81763940-acb8-47c8-b3a3-9454f151d31c", "metadata": {}, "source": [ "3.环境变量的配置" ] }, { "cell_type": "markdown", "id": "2e0c66d9-e5cc-4282-9d36-0adbeed7479f", "metadata": {}, "source": [ "现在的新版本一般情况下是自动配置,但还需要进行检查,是否配置" ] }, { "attachments": { "76c1ed66-520e-4ea3-96bb-4f61775cd2ba.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw0AAACxCAYAAACGAVFzAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADR+SURBVHhe7d0/jpxO3gbwh/csjSwHPkD1DbrlwJFDh9XhzgSWNnGyDjZwQGuTVXe0+oUTORjBDZoDOLAsOMT8TlBvwL8CqgoK6Jke5vlISDYNFHzrO00VDVTw9PSk/vPf/4GIiIiIiMgkqDoN3/75j+5nRERERERE+L/uDCIiIiIiIh07DURERERE5MROAxERERERObHTQERERERETuw0EBERERGREzsNRERERETkxE4DERERERE5sdNAbXmOPM+7c4mYG0RERG+YZ6ehaDQ4p+4qHcVy3bl0GxIcwhBhGOKQdD+bIc+RJEk92eqfuXHLrpQbRERE9Cp4dRqSQ9FocE7OFkWCH2GIMNziyMbh6uXHA7ZBgCAMsd/v6ykMAwTbA5JWDjA3iIiIiG6VV6dhvh0+SQBI8fDIluHaZb/PSAEIKRHFMeI4gpSi+DA9Yx8e0HQxmRtEREREt2pap0HGUEqZp9Ouu3TL7msEASC9/6E1GGmNwk8xMqVwOZ1wt9tht7vD6XSByoocAM74rv2swNwgIiIiuk3TOg1zbD7iswCAM36yZbhqm90Om+5M6DkApL8zw3zmBhEREdEteYZOQ/fh6A0+li3Gs2/LUHvg2l+1bne+w+Tyxj8YDrTLGbV8z4Rjqx88nlDm5LhUNnj3oTsPzA2TN5cbREREdJOenp7Uv/59VGPEEgqAgoy7H5nFslgeQkVZ6wMljfMNslhFUpTbaU9CRqq/erVtKBkX60vRXVcUn5l4l9fIIqmEYT2ISPWLy1RsXV5a4jLz2JRSSmXG4yuOrbP91mrT49KXqajcb9E7UObG284NIiIiukVX7TTUyxsah9Vn3fldzTaEElIqKaWSQmugiG6jRGvcRFHZ8BL99SyNUv/yVKsR3F5XlOXLTsOw06AT5f51Gl79MM87Nn39otzi+ES1L6La337Z0+JiltWdyW5cCswNbfk3lhtERER0myZ3GrIsM06dNVQkhBIy7jcasqph0200tcVSKBn31h7xK0Yx9Rqedbnmzo9/ee1Gk2ndLM5ax68v392WUpnj8znHpjdepertpr6usWFoPjZXXJQqrkLHcTlFUdMgtl4xZ27YtrW63CAiIqJXY1qnwTr5NA6ahkq3ETKO7RYXrfFkucKZReVVUMvnZpbytAbVqOOoG1Ku5bVGXGuhGcdW76ejjkbtW5clLtWn1f5oOSJk1G+YtjA37MuvJzeIiIjo9Zj8ILQQwjAZn2612ODumwSmPPQKANDeumMhPn80vr1nUz2Fm/4esZWKecn88QEpAIgIX91vmwUA5H9+Ff9wLt88EIxff4wPo/oeW7Ofn/HRtCIA7D6hqBEf5rjU3n2GlLKcBARSpOd77MMA20NiPDbmhmv5FeUGERERvRrTOg0yxuVyMUwn3NkaHSZVQ+T83T0KcJ7geDzgsN1iuw0QBAGCYI/7tLtg24d3Pjuj8Sgv+13O/PDO2FDrGru8rYFX8T22seU6ecSlstnd4XQ6ldMFF6WQxeV4DOe9fQRx5obVWnKDiIiIXo9pnYbFDI8CnBy2CMI97u/POKcpUggIUVy5Lq+3LsqvvBz1xeH3YfdDA9/llzK/XL+4uG12d7jE5XVra6eAufE85pfrFxciIiJ6jV640+AeBTg/brE/pwAEZJwVI06Xv2icTl/rAcKW8tzlvRZXiUt9u0sKfXw3HXPj9jEuREREb8OLdxrsowDneHwo7m0Q0V847SbfODHSlPKaQcrSh0fj/eVt45dv7m9/j2nXf3VaubYWOgDkf1CWqs+cEJeFMDeMmBtERET03F6+0zDioVfjPdr5I8r2yuJ8ytsV99AA6QMsd9G0jFtea4xZHmr1Fb4vL/labwfSHoi18InLoOQnzgAAiU+Oh36ZG11vIDeIiIjo5ly505DjeDjgcLS9Jac08NDr+Wd3/RzHL/fORswcXuXtviISAJDiPjwgMex/nmjbG1w+R3IIywdIJb55PVlut7n7Vt8OdP/l2KuPPDkgHHhq1SsuydFa73lyxHZfdBkgP8HaZwBzo20luUFERESvz7LjNLTf9a4vP/Rud9MowK13/Gsj4wqUI9Ya3wGvjYxrK9MyIvG08trv4zeu2xukzDz6brN8O46m9XyPrf1ZeRzl6L3VqL8iiozbnxQXrSxRH582wjAM4wVYMDdWlhtERET06ly106A3KKwNmYplFOAsku1GF6CEjFRmHThqXuPJv7xqxVhFsjuQmb5+V2ZfXhhG5VVq9rEppVQW948PEEpGmXP73nHJ4mb0594klIwMo4TbMDea5deQG0RERPTqBE9PT+o///0fvv3zH90fIZaR58g3mxH3Xuc4botbL2SscOrcs5Ln5c0Po7Y135zy6nUBbDbDa/suv4g8r28n8SlzSlz04wM28CiuxNzAyOUX8Yy5QURERK/D9TsNPpIDgv0ZkDFUt2VIbxtzg4iIiOjFXPlBaE8DD73SG8bcICIiInoxt/VLAxERERER3Zzb+qWBiIiIiIhuDjsNRERERETkxE4DERERERE5tZ5p+Pvvv7ufExERERHRG8cHoYmIiIiIyIm3JxERERERkRM7DURERERE5MROAxERERERObHTQERERERETuw0EBERERGREzsNRERERETkxE4DteU58jzvziV63bnxmved6Bbxb4rozfHsNBRfEs6pu0pHsVx3Lt2GBIcwRBiGOCTdz2bIcyRJUk+2+mdu3LJlcsO/jsd9rxRyHLcBgmDb2cdl9v3W+cf2Gmx1QEvKte/TJBn791GpzteduYZ5dnP+ppgjRK+VV6chORRfEs7J+S2Q4EcYIgy3OI7+cqLXKj8esA0CBGGI/X5fT2EYINgekLRygLmxfv51XH/nOL9XSvkjHlIASHH+OWL5VfGP7VW86Tq4thzJcYttECDUvk/3+xBhcMC4aOc4bsu/qS9HrbPxjPnDHCF6tbw6DfPt8EkCQIqHx2t/M9FLy36fkQIQUiKKY8RxBClF8WF6xj7UT3TMjfW7ch1vPuKzFBBCIPq66366cleO7Vhvug6uqWjs7+/T4jtVSERRjDjSvlPHSH7gPu3OxPPmD3OE6PV6enpS//r3UY0RSygACjLufjReFikBKECqGVuhq4iVRFHHc6q4ksWxyrozlZ4DUCLSlmBu3LCFcsOzjhf5zllq32+dZ2zp9aj/DiBVbPxSHaP5OwCgIKL297NX/ryRvykiannmXxrKqwwCAM7gL5PrttntsOnOhJ4DQPo7M8xnbqwW6/h6GNt1Sg7YnwFAIMpO2Bm/VIflx+84AxDC8ssE84eIBjxDp6H7kNYGH8sWo/f9jNoD1/7MD385TS5v/IPhQLucUcv3TDg2VA++TShzclwqG7z70J0H5obJ6nJjRh0vbmhfHVyxGYyBg2u7gxaI7VC918fW/WCqadubnJ+vUPLzXPxDfsPdxA4D8iO+3KcAJL59M375LpM/c/6mrKblCBFdwVVvT4pl+VOoUPpdKM1Pm935BlmsIiman1S1ScjOz6tK9X82zWIlRXddYf9J1bu8RhbJ+rab1iQiw8+9mYqty0tLXGYem1JKqcx4fMWxOX5ynhGXvkxF5X63bk9SirlRLL3y3Bhfx37fObZ9HBMbKCFNt9N1121urWvdxjE5Bubtyuq4u7eQtJiOd2xs++V3Y6Lvdxbr+1ftm+lWGdM+GeYb62DZ/MyicllLDIc+r3Kv/x1lN7TNoc/7ZY6tT5fm+1bGqjkvG/dhbHlj6nPk35RtvnGbQzlCRNd01U5Dcx9m/4u3/+Vo1mxDKCGlklIqKbQTR++LT/viiaoTneivZ/lS9C9Ptb6U2+sKyz2inS9DUe5f54TYD/O8Y9PXL8otjk9U+yKq/e2XPS0uZlndmezGpcDc0JZfaW5413G3UKMxjZHm39W+thrDvX01r1tMTd35x2Bgu9YLLhrL39G42BrypVvnKOLe/L1W+dTZV9t2bXXwXPnpjKH+d2n6vCrP9JnD0mWa6jjLVBzHKo5jlfW20Vd3VKrAODsNE/Jn1t+UZf6kHCGia5vcaciyzDh11lCREOarDSMfuoqlULJ/Ocvx5dw+ufS++PQreoaGiH957QaDad0szlrHry/f3ZZSmePzOcemn7AMVwhbVzq7X+bT4qJUcbWoOsHFkXY103rFnLlh29aqcmN0Hdv22WS4MQKYGjFaw8qxrhDCuK6aFIOh7bp+jStYYzMqtu580eNRldHe/eq47PGyzTeVd538tO2La53u564YmixbZvuXCdOV9+K7tBeTiqnTMdBpMO1H3zJ/U7b58M4RInoO0zoN1ql7YnTp/GTqzXZS1b54DF9kqvdFPJalPO2LbNRxWE+2Ou0k2VpoxrHV++moo1H71mWJS/Vpt/EBoYSM7Cc5pZgbzuXXkhvj6tjaMDYa0xixN4TqslrxGbeunS0Gw9u11pdS2vqmOhsT26F8Gdq/4Ty01oGxPMfxjsg9WwPVlj/V8lKW27Z83p0/xpJlNvOiMt7aL1mtXx9NdWSpi6FOg2/+GMsuDP1NLZYjRPQsJj8ILUTxnuX2ZHvAymSDu28SmPzQlfbWHQvx+aPx7T2b6inc9PeIrVTMS+aPD0gBQEQY88rp/M+v4h/O5ZsH0vDrj/FhP99ja/bzMz6aVgSA3ScUNeLDHJfau8+QUpaTgECK9HyPfRhge0iMx8bccC2/ltyYW8fTiOgrbKHdFS+q78WnJj9Z17UzbqnNst3Nx88QAJDe40c3RMlPFC/UMdWZX2zN+RLiffWSHeP+2V5mMMxcniM/R/xdbO6+GfOzrtPO30r2OwUg8P5rmdfnn63B0YrPAfnJUqDDkmVW83C+xz0iZOqCy+mE0+mE0+kClUVFjuCM761R2XIct/siR2SMk9dheObPnL8pC98cIaLnMa3TIGNcLhfDdPJ7u0PVEDl/d49CmSc4Hg84bLfYbgMEQYAg2FsGqWl8eOezMxqP8uov9Q/vjF9yXWOXH/py9D22seU6ecSlstndlSe44iR3UQpZXJzo0vPePtIvc8NqLbkxuo4X5IxN+L5sgP3CH8P+DDYgp8TAtd3NHcq2W6/xVr1Rx9a48omtMyYAxPuwO2uWofK6ZuVnFYf0Ac2YZQl+nqsOVzWomV7n5eeQaFVNfixGuDdN+vfYkmXWBKK/7vrHr+VI+vBYd1Ly45ci70SEzK/HUFgqfwb+pmyc2ySiFzOt07CY4VEok8MWQbjH/f0Z5zRFCgEhiivXlrdNz+JXXo76ItioE6vv8kuZX65fXNw2uztc4qo1ZDspMTeex/xy/eKiG67j12J6DNzqK7X6Ven8iO9lA/Ob9SrNWmI7Nz+rX0y0OJS/0lQdrvC9MH7e/4XlHT7Xv5p2pta+LVdmsVzV2dA+0HSv5ufJAWH5etXor4/t1zZ3XlObGeYV1pI/RLSkF+40ALuv5VXn+x+tn2oBID9usT+nAARknEEpBVX+onE6fa0HCFvKc5f3WlwlLvXtLin08d10zI3bNzcurjp+dtnv4jYtfIDPhc65MXDafUUkAH3Arfp2sl6jtu2mYvtimtv5qoEki19pBD6XrfDqNrDqSn11O1Svk7LZ4a7+1bQztTpvC5bpLcdj0aMEcMZ9GCLsTsVIcUB6j301z/CL7yL5M/Fviohu04t3GuyjUOZ4fCi+bkT0F05Th8EcbUp5zX29+k/DduOXb+7jfY+5p5FWubYWOgDkf1CWqs+cEJeFMDeMVpUb1jq+jl+OeySmxXWBGDh1B9xqyrPe1lR55thex5z8LNTPhpx/Iql+udCv3FdxSn8jq+PbNPCnWKrM5rkW862IRh+6zxp2Jm1R07zayPxZ/m+KiG7Vy3caRjx0Zby/MX9Eee5cnE95zU/D+v2rduOW1xoitnuWPdU/c1tvB9KuYFr4xGVQ9XO89R5eMDeM1pYbw3W8JHuHLMGP6uGDKffOz4qBW6sBWm3P8VBw43ljey2z87Nu/P7Cn2MRv/bfTtUxOeNnkqF4Xtl+O9AoS5WpNdzbDzo3mhGjP2GHDe5O3WcNO1N1a6iI8Fc1z/jcw7j8uebfFBHdlit3GnIcDwccjra35JQGHro6/+yun+P45d5+kpjJq7z69oEU9+EBiWH/80Tb3uDyOZJDWD486bpn2U/zdpEU91+Ovfpo7oO184pLcrTWe54csa1+Ih+4xYK5oVtJbnQN1PGi0nt86RWSIzmUb5qBQDTcGjeaFQOX+mHXM75/KRrHozuMzxnbK5mfn9WvNSkeHor4dTt4VYf91/fvrWcPpluqTO1Wp/svvTrMkwOar9Jpees0Jn+u+DdFRDdm2XEa0HpvuL68/X3PhWpZ/V3mrXf8ayPjCqAYEXTg/efWMk0D3kwuT7Xex29ct/cea/0d1+W2W8u342haz/fY2p+Vx1GN3lkfV2Tc/qS4aGWJ+vg6o82OfNc2c2NluWFgqmN9vnuqjscWA21+9Y78aqTZVlz75du32ZgWg+HttrTqx1B/DubYDpVvG1+iYR6PwLZd23zNFfLTvL5h+62/O9Pf1wSLlamNiaF9n+rfpbY6Mhocp6FtMH8W+5uyzde4coSIru6qnQbbgDtGllEos6gzJD2ghIxUZj2pzfvi8S+vWjFWUWuwne76XZl9eesIn/OOTSmlsrh/fIBQMsqc2/eOS2YZvbQuzzBKuA1zo1l+DblhYqnjcd85Hp2G2HKcQqrIGFjbNtv8YzBuuw2tgTluhYYxtkPl2/a78aydhhn5WRiOX5Nr5vL9LVlmpmLjd4JlJHIXz07DmPwx1o3335RtvmYgR4jouoKnpyf1n//+D9/++Y/ujxDLyHPkm43hZ9euHMdtceuFjFVvMJo8L3/+HLWt+eaUV68LYLMZXtt3+UVor9nzKXNKXPTjAzbwKK7E3MDI5RfxjLnRcNfxNTSxnZKTZvNi4JLgEBS3e/jH5/lje1Wm/MyP2Ib3SCEQZRe/8YJemWvkrdv4/Hn+fSOi53T9ToOP5IBgfwZkDOX6ZqK3h7mxfqxjuyo2IkJ2MQzyNWTtsa2ODxKxOrmfkyJ/a88fIhrlyg9Cexrz0BW9TcyN9WMdW+Q4lu/eNz8sO8KqY9vEZ/DFCjTNqvOHiMa6rV8aiIioJT9u6xF+3+ZV9BzHww/g01fcdcfByBMcv+zLN4qt/9YkIqKXdFu/NBARUXE7SLDFNgjq14nK+C12GEq/zrjfhwiCAMF2i+22iE0QNh0GGbPDQER0Tew0EBHdpLQY40FIRJn7AdR12+DjtwhSlIO8pSnStIwNBISMEGeXNxwfIqLnwduTiIiIiIjIqdVp+Pvvv7ufExERERHRG8dfGoiIiIiIyInPNBARERERkRM7DURERERE5MROAxERERERObHTQERERERETuw0EBERERGREzsNRERERETkxE4DteU58jzvziV63bnxmvedGqxHIqIX49lpKL6wnVN3lY5iue5cug0JDmGIMAxxSLqfzZDnSJKknmz1z9y4Zcvkhn8dj/teKeQ4bgMEwbazj8vs+63zj+3L89vnOfVoyw0iIhrLq9OQHIovbOfk/EZO8CMMEYZbHEefKOi1yo8HbIMAQRhiv9/XUxgGCLYHJK0cYG6sn38d1985zu+VUv6IhxQAUpx/jlh+Vfxj+/KecZ/fdG4QES3Dq9Mw3w6fJACkeHi89lmCXlr2+4wUgJASURwjjiNIKYoP0zP24QHN6Zu5sX5XruPNR3yWAkIIRF933U9X7sqxvYpn3Oc3nRtERMuY1mmQMZRS5unk/kLefY0gAKT3P7QGI61R+ClGphQupxPudjvsdnc4nS5QWZEDwBnftUuMzI31u24db3B3uuByueBu0/1s/a4b2+t4vn1+27lBRLSEaZ2GOTYf8VkAwBn8lXjdNrsdjOfnOgeA9HdmmM/cWC3W8fW8xti+xn0mInqjnqHT0H2IcYOPZYvR+95S7YFrf9W63fkOk8sb/2A40C5n1PI9E46tfghxQpmT41LZ4N2H7jwwN0xWlxsz6nhxQ/vq4IrNYAwcXNsd9DKxrXPF53jr41xinyeUP2ja3w0R0ao9PT2pf/37qMaIJRQABRl3PzKLZbE8hIqy1gdKGucbZLGKpCi3056EjFR/9WrbUDIu1peiu64oPjPxLq+RRVIJw3oQkeoXl6nYury0xGXmsSmllMqMx1ccW2f7rdWmx6UvU1G536J3oMyN9efG+Dr2+86x7eOY2EAJGTv2tVo30upFNnU3OQbm7crquIVp3YrpeEfGti5PO4aOLCqPx7gP5lxB72/afZxF2SP3ubetGfVom2/c5tDfDRHR23DVTkO9fO9E0nzWnd/VbEMoIaWSUioptJNV74SmnQSi6gQl+utZTlD+5aniBNo60VTrCsuJuXNiEuX+dU7C/TDPOzZ9/aLc4vhEtS+i2t9+2dPiYpbVncluXArMDW35leaGdx13CzUa0zBs/l3ta6tz1ttX87rF1NSdfwwGtmu94KKx/B2Niu2sToO+v/3jtXcaDMdZLTVmny3b8q9Hy/xJfzdERG/H5E5DlmXGqbOGioQwX/kZcdJSSqlYCiXj3traCbP7Zd4+MfVOQvqVLkNDxL+8doPBtG4WZ63j15fvbkupzPH5nGPTG69S9XazdQWwe2KdFheliit3cVxOUdQ0iK1XzJkbtm2tKjdG17Ftn02GG4aAqUGpNZAd6wohjOuqSTEY2q7r17iCNTZjYjtiGVunoYmVad1MtU8DQ8dZGrE/S9Wjbb4x1s6/GyKit2Vap8E6dU+MLs1Jcdp3se2kqp0EDCcV5TgZulnK004qo46jbkS4ltcaca2FZhxbvZ+OOhq1b12WuFSfaifxYhJKyKjfMG1hbtiXX0tujKtja8PYaEzD0N4orctqxWfcuna2GAxv11pfSmnrm+psRGxHNNJt5U+tE1dZo/Z55LaG6tGaG8Y42+NARPTWTH4QWojindftyfh0q8UGd98kMPkBOO2tOxbi80fj23s21VO46e8RW6mYl8wfH5ACgIgw5vXf+Z9fxT+cyzcPB+LXH+ODkb7H1uznZ3w0rQgAu08oasSHOS61d58hpSwnAYEU6fke+zDA9pAYj4254Vp+Lbkxt46nEdFX2EK7KwYN6MWnJj9Z17UzbqnNst3Nx8/Fq4nTe/zohij5iTNsdXbd2Ibvy/w7f/cblM1ynAW/fZ5Vjxa+fzdERG/NtE6DjHG5FO+8bk8nv3dgVw2RoZNPnuB4POCw3WK7DRAEAYJgj/u0u2Dbh3c+O6PxKC/7Xc788M54wukau/zQicr32MaW6+QRl8pmd4fT6VROF1yUQhaX72Y/7+0j/TI3rNaSG6PreEHO2ITvy/FDfuGPYX/kJ1sztTQlBq7tbu5QtqN7Denk5xlwNHSvGdvN3beyA5niPgyw3R6QjHjNkPU4Kx77PKcebZzbJCKiiZ2GxQyPCJoctgjCPe7vzzinKVIICFFcuS6vdy3Kr7wc9cXh92H3QwPf5Zcyv1y/uLhtdne4xFVryNZAYG48j/nl+sVFN1zHr8X0GLjVV83PP5vBz/Ijvp8BQOKb9SrNNWO7wymLEZWju6fpGfswRLDd4pDMKeua+0xERHO9cKfBPSJoftxif04BCMg4K0acLn/ROJ2+1gOELeW5y3strhKX+naXFPr4bjrmxu2bGxdXHT+77HdxmxY+wOei89wYOO2+IhKAPvhZfTuZ83afK8d2s8Pd6QKVZYilKG+jSnHeh9iarwKMssg+T6xHIiJye/FOg31E0ByPD8VXv4j+wml37W//KeU1g5SlD4/G+8vbxi/f3N/+HtOu/+q0cm0tdADI/6AsVZ85IS4LYW4YrSo3rHV8Hb8c96tMi+sCMXDqDn7WlDd4u8+o2Npv4alvW3PZbLA7XXBRWdm5mdngH7XP16hHIiIa8vKdhhEPwBnvNc0fUZ47F+dTXvPQ3QPG/KI+bnmtIWK7Z9nTmIcX6yuYFj5xGVQ9yAkJe9uHudG3ttwYruMl2TtkCX5UDx9MfLZjegzc6geizz+RVNtzPixfccR28w5FX9H2S1+C8rGJkZqy5nHss+aa9UhERGZX7jTkOB4OOBxtb8kpDTwAd/7ZXT/H8cu9sxEzh1d59e0DKe7DA0y39OaJtr3B5XMkh7B8eNJ1z7Kf1sOLX469+siTA8KBJza94pIcrfWeJ0ds92WLZOAWC+aGbiW50TVQx4tK7/GlV0iO5LAvO7EC0XBr3GhWDFzqB6LP+P6l6LyN7jBaYxui6St261yPR19yPBpyU7vCP5d1nzVXrEciIrJYdpwGtN4bri9vf/d2oVpWf5d56x3/2si4AihGrB14/7m1TMtIqtPKa7+P37hu753i7QGFqtF3m+XbcTSt53ts7c/K46hGUq2PKzJuf1JctLJEfXzaCMMY/95z5sbKcsPAVMf6fPdUHY8tBtp82Qy21o9rv3z7NhvTYjC83ZZW/Rjqz8EW2/Y2m5Gdq7yMLOMTNOMgNH/X+ujJs46zZN7na9Sjbb7G9XdDRPSGXLXTYB+d08Ay2FAWVSexZhIyUtmIQZOsZTpOAv7lVSvGKpLdgcz09bsy+/LCMCqvUrOPTSmlsrh/fIBQMsqc2/eOSxY3oz/3JqFkZBgl3Ia50Sy/htwwsdTxuO8cj05DbDlOIVVkDKxtm23+MRi33Uaz/LhB1TSW2BYf9fcbZY7ZBjXrD9hYrScMMfQ9zpJxn69Rj7b5moG/GyKityJ4enpS//nv//Dtn//o/gixjDxHvtmM+Ck9x3Fb3HohY4VT55flvHoP+KhtzTenvHpdAJvN8Nq+yy8iz+tbEnzKnBIX/fiADTyKKzE3MHL5RTxjbjTcdXwNTWyn5KTZvBi4JDgExa03/vEZju2UWLT+rhc/3uF9rkzZdyIi8nf9ToOP5IBgfwZkDOU6S9Dbw9xYP9axXRUbESG73Pk30F9jbF/jPhMRrdiVH4T2NOYBOHqbmBvrxzq2yHEsRnMb/wB012uM7WvcZyKiFbutXxqIiKglP27Lt1dJxOrkftsYERHRldzWLw1ERFTcmhNssQ2C+nW3MmaHgYiIXg47DURENyktxngQElHmfhiYiIjo2thpICK6NbsTlFLFdDlhoXH8iIiIJms90/D33393PyciIiIiojeOD0ITEREREZETb08iIiIiIiIndhqIiIiIiMiJnQYiIiIiInJip4GIiIiIiJzYaSAiIiIiIid2GoiIiIiIyImdBmrLc+R53p1L9Lpz4zXv+7UwJkRE5MGz01CcZJxTd5WOYrnuXLoNCQ5hiDAMcUi6n82Q50iSpJ5s9c/cuGXL5IZ/HY/7XinkOG4DBMG2s4/L7Put84vtnJjY4kxERGvm1WlIDsVJxjk5zyIJfoQhwnCL4+iTG71W+fGAbRAgCEPs9/t6CsMAwfaApJUDzI3186/j+jvH+b1Syh/xkAJAivPPEcuvin9sJ3vTcSYieru8Og3z7fBJAkCKh8drn9nopWW/z0gBCCkRxTHiOIKUovgwPWMfHtA0OZgb63flOt58xGcpIIRA9HXX/XTlrhxb3ZuOMxHR2zWt0yBjKKXM08l9Etl9jSAApPc/tAYjrVH4KUamFC6nE+52O+x2dzidLlBZkQPAGd+1y6LMjfW7bh1vcHe64HK54G7T/Wz9rhtb3duOMxHRWzWt0zDH5iM+CwA4g79sr9tmt4OxTVHnAJD+zgzzmRurxTq+HsaWiIiu6Bk6Dd2HGDf4WLYYve+H1R649let253vMLm88Q+GA+1yRi3fM+HY6gcnJ5Q5OS6VDd596M4Dc8Nkdbkxo44XN7SvDq7YDMbAwbXdQUvEdsa+W03LQSIiujFPT0/qX/8+qjFiCQVAQcbdj8xiWSwPoaKs9YGSxvkGWawiKcrttCchI9Vfvdo2lIyL9aXoriuKz0y8y2tkkVTCsB5EpPrFZSq2Li8tcZl5bEoppTLj8RXH1tl+a7XpcenLVFTut+gdKHNj/bkxvo79vnNs+zgmNlBCxo59rdaNtHqRTd1NjoF5u7I6bmFat2I63rGx7ZY/Iya2+cZtDuUgERHdqqt2GurlDY3D6rPu/K5mG0IJKZWUUkmhnZx7J1XtxBVVJ2LRX89yUvUvT7Uawe11RVm+1rhQqthHfXlR7l+n0dEP87xj09cvyi2OT1T7Iqr97Zc9LS5mWd2Z7MalwNzQll9pbnjXcbdQozGN2ebf1b62Ome9fTWvW0xN3fnHYGC71gsuGsvf0bjYmsv3j4ll/qQcJCKiWza505BlmXHqrKEiIcxXq+ora91GU1sshZJxb23thNk9AbVPwL0Tp35Fz9AQ8S+v3WAwrZvFWev49eW721Iqc3w+59j0xqtUvd1sXensNgamxUWp4mpjHJdTFDUNYusVc+aGbVuryo3RdWzbZ5PhxixgagQrlUVNo9a2rhDCuK6aFIOh7bp+jStYYzMqtsvExDbfuN/OHCQiols3rdNgnbonRpfmpDjt/GE7qWonLsOJUOknQ8vnZpbytBPhqOOoGxGu5bVGXGuhGcdW76ejjkbtW5clLtWnWsOjmIQSMuo3TFuYG/bl15Ib4+rY2jA2GtOYtTek67Ja8Rm3rp0tBsPbtdaXUtr6pjobE9vh8tWImFjjbNznoWMiIqJbNvlBaCGK93S3J+PTrRYb3H2TwOSH9rS37liIzx+Nb+/ZVE/hpr9HbKViXjJ/fEAKACLCmFeW539+Ff9wLt880Ihff4wPRvoeW7Ofn/HRtCIA7D6hqBEf5rjU3n2GlLKcBARSpOd77MMA20NiPDbmhmv5teTG3DqeRkRfYQvtrhjooBefmvxkXdfOuKU2y3Y3Hz8XryZO7/GjG6LkJ86w1ZlfbGfFxMI3B4mI6PZN6zTIGJdL8Z7u9nTye2931RA5f3ePYponOB4POGy32G4DBEGAINjjPu0u2Pbhnc/OaDzKy36XMz+8M54ku8YuP3Ry9T22seU6ecSlstnd4XQ6ldMFF6WQxeX75M97+0i/zA2rteTG6DpekDM24fty/JBf+GPYH/nJ1rQuTYmBa7ubO5Rt/17jP/l5BhyNc5/YzomJjXObRET0Kk3rNCxmeBTT5LBFEO5xf3/GOU2RQkCI4sp1eb11UX7l5agvDr8Pux8a+C6/lPnl+sXFbbO7wyWuWkO2Rg1z43nML9cvLrrhOn4tpsfArb7Sf/7ZDNiWH/H9DAAS36xXadYTWyIiug0v3Glwj2KaH7fYn1MAAjLOihGny180Tqev9QBhS3nu8l6Lq8Slvt0lhT6+m465cfvmxsVVx88u+13cpoUP8LlQPjcGTruviARaA7bVt5NZbmuqLBLbiTEhIqL1efFOg30U0xyPD8XpSkR/4bS79hlrSnnNIGXpw6Px/vK28cs397e/x7TrvzqtXFsLHQDyPyhL1WdOiMtCmBtGq8oNax1fxy/HPTbT4rpADJy6A7Y15Vlva6qMjO3yMSEiojV6+U7DiIf2jPfH5o8oz52L8ymveVDwAWPuAhi3vNYQsd2z7Cl8X17utN4OpF3BtPCJy6DqQU5I2Ns+zI2+teXGcB0vyd4hS/Cjevhg4rMd02PgVj8Qff6JpNqe82H5yrjYXjMmRES0HlfuNOQ4Hg44HG1vySkNPLR3/tldP8fxy72zETOHV3n17QMp7sMDEsP+54m2vcHlcySHsHx40nXPsp/N3bf6dqD7L8defeTJAeHAE5tecUmO1nrPkyO2+6LLMHSLBXNDt5Lc6Bqo40Wl9/jSKyRHctiXnViBaLg1bjQrBi71A9FnfP9SdN5GdxjHxPaKMSEiohVZdpyG9nvD9eXt7wsvmEYxbb3jXxsZVwDFiLUD7z+3lmkZSXVaee338RvX7b0HvTuwUjmCbL18O46m9XyPrf1ZeRzV6K/1cUXG7U+Ki1aWqI9PG2EY49/VztxYWW4YmOpYn++equOxxUCbL5vB1vpx7Zdv32ZjWgyGt9vSqh9D/TmYY3uNmNjma1w5SEREN+2qnQb7iKIGllFMs0i2G12AEjJS2YhBk6xlOk5c/uVVK8Yqkt2BzPT1uzL78sIwKq9Ss49NKaWyuH98gFAyypzb945LFjejP/cmoWRkGCXchrnRLL+G3DCx1PG47xyPTkNsOU4hVWQMrG2bbf4xGLfdRrP8uIHuNMbYXiMmtvmagRwkIqLbFTw9Pan//Pd/+PbPf3R/hFhGniPfbEb8lJ7juC1uvZCxwqnza3ielz+fj9rWfHPKq9cFsNkMr+27/CLyvL6VwqfMKXHRjw/YwKO4EnMDI5dfxDPmRsNdx9fQxHZKTprNi4FLgkNQ3C7kH5/xsb1GTIiIaB2u32nwkRwQ7M+AjKFcZzZ6e5gb68c6tqtiIyJklzv/DgljS0REM135QWhPYx7ao7eJubF+rGOLHMdiNLfxD0B3MbZERDTTbf3SQERELflxW769SiJWJ/fbxoiIiK7ktn5pICKi4naiYIttENSvu5UxOwxERPRy2GkgIrpJaTHGg5CIMvcDzERERNfGTgMR0a3ZnaCUKqbLCQuN40dERDRZ65mGv//+u/s5ERERERG9cXwQmoiIiIiInHh7EhERERERObHTQERERERETuw0EBERERGREzsNRERERETkxE4DERERERE5sdNARERERERO7DRQW54jz/PuXCLmBhER0RvmOU5DjsE2w2YD1+ClRaNjg41rIXohCQ7BHmcAMlY47bqfT5TnSLKs/m8Y7oz1z9y4Zcvkxrw6zpEnGZpMAsIwxGbaxjzlOG5D3KcCMr5MPn4iIqLXyuuXhuQQIgwHpkPSXU2T4EcYIgy3OA51PujVy48HbIMAQRhiv9/XUxgGCLYHJK0cYG6s38Q6zo84bAMEQYhQy6Mil0IE2yN8NjdJ/oiHFABSnH+6vuOIiIjWyavTMN8OnyQApHh4vPppnl5Y9vuMFICQElEcI44jSCmKD9Mz9uEBTfOLubF+E+o4OSAI73FOi/8KISFlMYkylZ7F5iM+SwEhBKKvy/7MkOcJjoej9rdARER0g56entS//n1UY8QSCoCCjLsfjZdFSgAKkGrGVugqYiVR1PGcKq5kcayy7kyl5wCUiLQlmBs3bKHc8KrjpkyIyJxLKlOxLc9eA694EBERvZxn/qWhvGInAOAM/sq/bpvdzvx8S50DQPpbu0OdubF+PnWc/MQZACARX+7MuYQNdrY8IyIiosU8Q6ch79xvvMHHssXofW9w+faWaW9wqdbtzneYXF6z3qg1tXJGLd8z4djKh1InlTk5LpUN3n3ozgNzw2R1uTG+jvM/v7qzZpgQR59le4biME19DAtvl4iIaNBVb0+KZbE8hNLvQmluO+jON8hiFUlRbqc9CWm6ZaFzG0UWKym66wr7LRbe5TWySNa33bQmERluPchUbF1eWuIy89iUUkplxuMrjs1xC8qMuPRlKir3u3V7klLMjWLplefGyDquvz8MZY40Lu7d2DW3zzW3DdmOv7uuKe5QQrZvocoic7yqqV2GuV5g/PshIiK6jqt2GurlDSe36rPu/K5mG0IJKZWUUkmhnUB79zprJ/GoOvmL/nqWBot/earVCG6vKyz3K3caFqLcv07DoB/mecfWukccRQNUSqlEtS+i2t9+2dPiYpbVjcFuXArMDW35lebGuDrW90koGbuW7fKJu97w78TBq9PQ/LuKQ6vDosVhfKehHYNufN3xIyIiWs7kTkOWZcaps4aKhOhdZVNKv5rXbTS1xdLSWBj8FaM8eXdPqvpVxG7rZ1J57UaTad0szlrHry/f3ZZSmePzOcemN6Kk6u1m6+pqt2E0LS5KFVde47icoqhpEFuvmDM3bNtaVW6MrGMVdxvehv0z8Iu71tgXwtjJGdNpKPavv67eQejGbigOzbqmzzPV+8olIiK6kmmdButkaBxYNQ2V3ol0FNstLtpJ3HACV/qJ2PK5maU8rUE16jhG3XKhNeJaC804tno/HXU0at+6LHGpPu1dURVKyGig4cfcsC+/ltzwqGPTLT+uzoNv3FsNf1PjXI3sNNjW1b47rbE3r6tfqCEiInpJkx+EFqJ4Z3l7Mj7darHB3TcJjHgg0kwfF9ZMfP5ofKvKpnoKN/09YisV85L54wNSABARxry+vX6407l887Aofv0xPozpe2zNfn7GR9OKALD7hKJGfJjjUnv3uX6vvpQCAinS8z32YYDtITEeG3PDtfxacsOjjjc7nC4KWayNzZCeixwyjBLnG/cW+Qm+q1RE9NW67q4YoKIX+yHh+/KAz9/9BsQjIiJa2LROg4xxuVwM0wl3tkaHSdUQGToh5gmOxwMO2y222wBBECAI9rgvB3yy+fDOZ2c0HuVlv8uZH94ZG2pdY5e3NfAqvsc2tlwnj7hUNrs7nE6ncrrgohSyOIIAkJ739hHEmRtWa8mN0XVc2uxOuFSdh3Jeeh9i28mhOccjP9ma/cOccQ/fl/v8C39GHGtlc/et7KyluA8DbLcHJHxzEhERvYBpnYbFDI8Qmxy2CMI97u/POKcpUoh6VNhrDAjrV16O+uLw+7D7oYHv8kuZX65fXNw2uztc4vLKq7XByNx4HvPL9YuLbriOTTa7Ey4qQ1RuPG3l0PzjuS07nLIYUTmSepqesQ9DBNstDsn4mBEREc31wp0GYPe1vOp8/wPda875cYv9OQUgIOMMSimo8heN0+lrPUDYUp67vNfiKnGpb3dJoY/vpmNu3L65cXHVsdsGd5e4ziGfTseLyH4Xt0zhA1w/SBhtdrg7XaCyDLEURUcsTXHeh8bbs4iIiK7hxTsN9hFiczw+FKdZEf2F0873TOtrSnnNIGXpw6Px/vK28cs397e/x/zrpVq5thY6AOR/0B9Oa0pcFsLcMFpVbljreIwQ1S3/zb6Pj+PSfjnuO1qkzjYb7E6X9q8s3p0tIiKiaV6+0zDigUjjvcL5I8r2yuJ8ymsecHzAmIud45bXGmOWh1p9jXmgsn6A1MInLoOSnzgDACTst5EzN/rWlhvDdWyXoXp8Qb8VaVwcl2fvpCT4UT3cMeE5i74mZkRERM/lyp2GHMfDAYej7S05pYEHIs8/u+vnOH65dzZi5vAqb/e1vOqX4j48wHSbcZ5o2xtcPkdyCMsHSCW+eT1Zbtd6oPLLsVcfeXJA6Hxq1TMuydFa73lyxHZfdBkG31bD3NCsJDe6LHWcH7eOB39zJId92fEU+Ky/9mkwjp24LyW9x5dekrb3M7K+zsn8S0tyPJr3v/rlgoiI6LksO04DWu9615cfes24aYTY1jv+tZFxBYr3tFfvbre9i99apmVE4mnltd8Lb1y39w727oBQ5Siv9fLtOJrW8z229mflcVSj1tbHFRm3PykuWlmiPj5thGEY3llvwdxYWW4YDNYxioHXikmLj23bXnEfETvrMtp82Qxm16+z7noVfWC9ZtTqatlmfIfmb0gfbdt47ERERFdw1U6DcyTULssgR1nUGREWUEJGKrMOHGU7uWscjSf/8qoVYxXJ7kBm+vpdmX1568BV845NKaWy7gi7QNHIiTLn9r3jYhqQq1WeYZRwG+ZGs/wacsPEVMdZ3Gog9yYhVWQORmF03O3H1rAt055vjOHgfnY6OFoZ3Y5Ts03h3iYREdHCgqenJ/Wf//4P3/75j+6PEMvIc+SbzYj7eHMct8WtFzJWOHV+xc+rWxRGbWu+OeXV6wLYbIbX9l1+EXle357hU+aUuOjHB2zgUVyJuYGRyy/iGXOj4a5jfZ/guV+4ahwTHILi9iN9v5vyxue7K36tvyHD50RERNd2/U6Dj+SAYH8GZAzVazXQm8bcWL9XWcfmTgMREdHaXPlBaE+WByKJmBtvAOuYiIjoZt1WpwE7nJSCUhcs9GIYWg3mxvqxjomIiG7VjXUaiIiIiIjo1rDTQERERERETuw0EBFNVt1SxYegiYho3VpvT/r777+7nxMRERER0Rv3//xDLLtfrazBAAAAAElFTkSuQmCC" } }, "cell_type": "markdown", "id": "f53755f0-5d79-4daa-9f14-ed78a780141b", "metadata": {}, "source": [ "只需要在path下配置以下几个路径\n", "image.png" ] }, { "cell_type": "markdown", "id": "39a7bfb4-7ee0-4ddf-b7f7-7ab419f50c66", "metadata": {}, "source": [ "4.进入环境base" ] }, { "cell_type": "markdown", "id": "a8dc12fd-6501-48d7-a2d7-99860dda7186", "metadata": {}, "source": [ "conda activate base" ] }, { "cell_type": "markdown", "id": "1adfc3f5-14f9-40d3-a181-1023a8830d72", "metadata": {}, "source": [ "5.下载JupyterLab" ] }, { "cell_type": "markdown", "id": "3098fe7a-e7cf-4d8a-8db1-e40f07f30c5a", "metadata": {}, "source": [ "pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple JupyterLab" ] }, { "cell_type": "markdown", "id": "54625b1a-8cdd-4cae-b83f-a149f176add9", "metadata": {}, "source": [ "6.配置JupyterLab" ] }, { "cell_type": "markdown", "id": "f515f8f5-71e0-451e-962b-7d54e097d419", "metadata": {}, "source": [ "jupyter lab --generate-config" ] }, { "cell_type": "markdown", "id": "cc40882c-8844-48b9-a55d-a66c7af6634a", "metadata": {}, "source": [ "编辑 ~/.jupyter/jupyter_lab_config.py文件:c.ServerApp.port = 8888 # 设置端口\n", " c.ServerApp.open_browser = False # 启动时不自动打开浏览器\n", " c.ServerApp.root_dir = '/path/to/your/projects' # 设置默认工作目录" ] }, { "cell_type": "markdown", "id": "00548517-6446-4093-910e-4fe6f7b4e4c2", "metadata": {}, "source": [ "7.启动jupyter Lab" ] }, { "cell_type": "markdown", "id": "8737874b-1ec1-4664-9531-2b41f11731ea", "metadata": {}, "source": [ "conda jupyter Lab" ] }, { "cell_type": "code", "execution_count": null, "id": "02377ebf-2aec-4fe8-ba7d-f59f7abd3052", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "自然语言处理", "language": "python", "name": "wcb" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.9" } }, "nbformat": 4, "nbformat_minor": 5 }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/990480.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法题解】MX-S5-T1:王国边缘与倍增跳跃——深入理解内向基环树处理

【算法题解】MX-S5-T1:王国边缘与倍增跳跃——深入理解内向基环树处理 题目概述与难点分析 题目链接:洛谷 P11267 问题描述 在一个神奇的“王国边缘”中,有 n 个节点,每个节点 i 都有一个唯一的下一个节点 to[i] 和…

标程-【MX-S5-T1】王国边缘

https://htoj.com.cn/cpp/oj/problem/detail?pid=22185117033728&tid=22487079604096&gid=22487067878400 #include <bits/stdc++.h> #define ll long long #define P 1000000007 using namespace std;…

关于排列问题的做题及思考

对于排列的处理方式较为经典,要么是确定相对顺序,要么是确定具体大小,插入法 确定(预定)法按值域 从小到大插入数 从小到大确定数的位置按位置(下标)从题目来着手,相信可以加深一些自己的认识。 At_dp_t 发现我…

图论杂题选讲

CF173D Deputies 题意简述 给定一个 3n 个点的二分图,将这个二分图分成 n 组,每组点之间没边。 分析 首先如果两边都是 3 的倍数,那么直接三个三个的选就好了。 如果不是那么就会有一边选一个另一边选两个的情况,同…

VMware Workstation Pro下载并安装Windows

VMware Workstation Pro下载并安装Windows 引言 欢迎阅读本教程!无论你是初次接触 VMware Workstation Pro,还是曾因安装失败而放弃,本指南都将为你提供一条清晰、无差错的路径。完成后,你将能顺利运行 VMware Wor…

第4章串、数组和广义表

第4章串、数组和广义表 4.1串的定义 1. 串的定义(课件核心内容)文字定义:由零个或多个字符组成的有限序列。 符号化表示:记作 S=′a1a2⋯an′(n≥0),其中 S 为串名,a1a2⋯an为串值,n 为串的长度。关于“串的定…

初始学习率 0.002

初始学习率 0.002 是 Faster R-CNN 精细微调场景下的保守配置,比标准值 0.02 小10倍,适用于迁移学习冻结Backbone或Warmup预热阶段。 一、0.002 的使用场景 场景1:分层学习率中的BackbonePython 复制# Backbone微调…

animation实现卡片翻转动效‌

使用animation实现卡片翻转动效‌,效果如下(iPhone转的gif有卡顿,实际效果流畅):先上全部代码,再在最后给出代码解析,分步说明实现原理。 html <div class="visual-card"><div class="…

调试工具

程序调试方法:串口调试:通过串口通信,将调试信息发送到电脑端,电脑使用串口助手显示调试信息显示屏调试:直接将显示器连接到单片机,将调试信息打印在显示屏上Keil调试模式:借助Keil软件的调试模式,可使用单步运…

完整教程:复盘Netflix的2025:广告业务、线下业态和视频播客

完整教程:复盘Netflix的2025:广告业务、线下业态和视频播客2025-12-06 19:20 tlnshuju 阅读(0) 评论(0) 收藏 举报pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !import…

深入解析:Photoshop图形工具组与图层样式

深入解析:Photoshop图形工具组与图层样式pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "…

Spring Cloud Gateway 源码分析一

Spring Cloud Gateway 总体概述 请关注微信公众号:阿呆-bot 1. 项目概述 Spring Cloud Gateway 是 Spring 官方提供的 API 网关解决方案,基于 Spring Framework、Spring Boot 和 Project Reactor 构建。简单说,它就…

利用Eval Villain进行客户端路径遍历(CSPT)漏洞挖掘与利用

本文详细介绍了如何利用Eval Villain工具逐步发现和利用客户端路径遍历(CSPT)漏洞,并通过实际演练展示了从漏洞发现到完整利用链构建的过程,包括工具配置、源码插桩和漏洞利用技术。CSPT the Eval Villain Way! Do…

Daytona:90ms 启动的 AI 代码沙箱基础设施

开篇 你的 AI Agent 生成了一段 Python 代码,敢直接在生产环境运行吗?传统容器启动需要 3-5 秒,虚拟机更慢。开源项目 Daytona 给出了新方案:90 毫秒内创建隔离沙箱,支持 Python / Node / Go 等多语言,还能持久化…

MongoDB Docker 镜像制作与部署指南 - 教程

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

20234320 2025-2026-1 《网络与系统攻防技术》实验八实验报告

20234320 2025-2026-1 《网络与系统攻防技术》实验八实验报告 一、实验内容 1.Web 服务环境搭建:完成Apache服务器的安装、启动与停止操作,掌握基础 Web 服务的部署与运维。 2.前端技术实践:理解HTML页面结构,掌握…

东莞水乡也新建了一个人工智能应用创新中心?怎么回事 - ---Wg--

东莞水乡建了一个人工智能应用创新中心?怎么回事 东莞水乡人工智能应用创新中心的诞生源于东莞市2025年发布的政府“一号文”,该文件明确提出深入实施“人工智能+”行动,并将水乡经济区列为重点布局区域。 东莞的目…

详细介绍:28种CSS3炫酷加载动画:创建引人入胜的网页加载体验

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

RocketMQ 与 Kafka 的详细对比(架构、性能、使用场景)

RocketMQ 和 Kafka 都是顶级的消息系统,但路线完全不同:Kafka 更偏“日志型管道 + 流式计算生态”,RocketMQ 更偏“企业级消息系统 + 可靠一致性”。下面直接从架构、性能、生态、使用场景一刀切开分析。🚀 一、架…

智商就是贼商,情商就是骗商,美国就是如此

ECT-OS-JiuHuaShan/https://orcid.org/0009-0006-8591-1891启动命题解构协议|情绪载荷剥离|历史因果场与道德场耦合分析1. 命题的情绪载荷识别表层语义:将“智商”贬为“贼商”(盗窃之智),“情商”贬为“骗商”(…